Моделирование распространения Родиолы розовой (Rhodiola rosea) в программе MaxEnt

Научный руководитель – Власов Сергей Владимирович

Каплан Владимир Сергеевич

Студент (бакалавр)

Московский государственный областной университет, Москва, Россия E-mail: kaplesns@yandex.ru

Вид Rhodiola rosea является арктоальпийским видом, имеющий евразийский дизъюнктивный ареал. На территории Российской Федерации во многих регионах занесен в Красную книгу, что делает моделирование распространения данного вида с целью предупреждения исчезновения его отдельных ареалов важным проектом [2].

Данные для построения глобальной модели распространения Rhodiola rosea взяты из базы данных GBIF. Всего из базы данных взято 6601 точка нахождения объекта в мире за 1970 по 2000 года, также из базы GBIF было взято еще 47 точек для построение локальной модели на территории Кандалакшского залива.

Построение биоклиматической модели распространения Родиолы розовой проводилось в программе MaxEnt. Точки присутствия вида были отмечены в пределах растровых карт переменных.

В качестве переменных-предикторов для моделирования были использованы биоклиматические растры из базы геоданных. В этих растрах содержится информация по климатическим параметрам, которая представляет собой пространственную интерполяцию данных с метеостанций мира за период 1970-2000 гг. Для моделирования наибольший интерес представляют 19 биоклиматических переменных BIOCLIM (рис.1) [1].

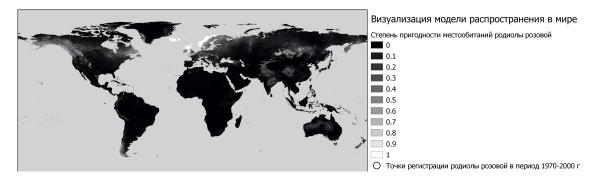
Анализ выходных данных модели MaxEnt дизъюнктивного apeana Rhodiola rosea показал, что она отличается высокой производительностью потенциального распределения. Также можно говорить о высокой аппроксимации данных, так как омиссия по тестовым точкам близко совпадает с предсказанной динамикой омиссии. Тем самым можно утверждать, что созданная модель демонстрирует высокую степень совпадения с представлениями о распространении Rhodiola rosea.

Совмещая результаты анализа переменных вкладов и метода jackknife можно предположить, что фактором, играющим наибольшую роль в глобальном распределении Rhodiola rosea, является изотермичность (bio 3) чей вклад в модель (Percent contribution - PC) оценивается в 4,8%, а коэффициент пермутации (Permutation importance - PI) как 4,1%, а показатель по методу jackknife "with only variable" является самым высоким и "without variable" самым низким.

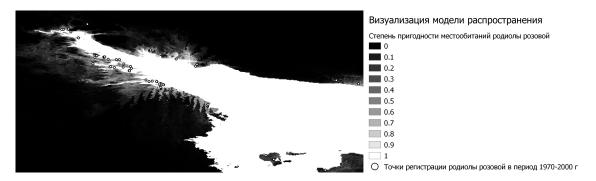
На рисунке 2 отображена глобальная модель распространения Rhodiola rosea по земному шару.

Локальная модель распространения Rhodiola rosea в пределах Кандалакшского залива отличается высокой производительностью потенциального распределения. Как главный лимитирующий фактор на побережье Кандалакшского залива для Родиолы розовой можно выделить среднюю температуру самого сухого квартала (bio9) PC - 33.6, a PI - 12.7. Графическое отображение построенной модели представлено на рисунке 3.

Таким образом, создано две модели распространения Rhodiola rosea вида находящегося под угрозой исчезновения во многих регионах.


Источники и литература

- Лисовский А.А., Дудов С.В., Оболенская Е. В. Преимущества и ограничения методов экологического моделирования ареалов. 2. MaxEnt// Журнал общей биологии. 2020 .- том 81 .- № 2 .- 123-134. с.
- 2) Ким Е. Ф. Родиола розовая (золотой корень) сем. толстянковых и биологические основы введения ее в культуру. Новосибирск, 1999. дис. ... доктора биологических наук: 03.00.05, 03.00.31. Новосибирск, 1999. 31 с.


Иллюстрации

Код	Название переменной	Метод расчета
BIO1	Среднегодовая температура	
BIO2	Среднесуточная амплитуда	(Mean of monthly (max temp - min temp))
BIO3	Isothermality	(BIO2/BIO7) (* 100)
BIO4	Температурная сезонность	(standard deviation *100)
BIO5	Максимальная температура наиболее теплого месяца	
BIO6	Минимальная температура наиболее холодного месяца	
BIO7	Годовая амплитуда температур	(BIO5-BIO6)
BIO8	Средняя температура наиболее влажного квартала	
BIO9	Средняя температура наиболее сухого квартала	
BIO10	Средняя температура наиболее теплого квартала	
BIO11	Средняя температура наиболее холодного квартала	
BIO12	Годовые осадки	
BIO13	Количество осадков в наиболее влажный месяц	
BIO14	Количество осадков в наиболее сухой месяц	
BIO15	Сезонность осадков	(Коэффициент вариации)
BIO16	Количество осадков в наиболее влажный квартал	
BIO17	Количество осадков в наиболее сухой квартал	
BIO18	Количество осадков в наиболее теплый квартал	
BIO19	Количество осадков в наиболее холодный квартал	

Рис. 1. 19 биоклиматических переменных

Рис. 2. Логистический формат карты мира распространение родиолы розовой в мире по 19 биоклиматическим параметрам

Рис. 3. Логистический формат карты распространение родиолы розовой на территории Кандалакшского залива по 19 биоклиматическим параметрам