Секция «Вещественный, комплексный и функциональный анализ»

Квантовые графы с суммируемыми матричными потенциалами

Научный руководитель – Маламуд Марк Михайлович

Грановский Ярослав Игоревич

Сотрудник

Институт прикладной математики и механики НАН Украины, Донецк, Украина E-mail: yarvodoley@mail.ru

Рассмотрим граф \mathcal{G} , состоящий из $p_1 > 0$ бесконечных рёбер и $p_2 \ge 0$ конечных рёбер, $p_1 + p_2 := p$. Каждое ребро будем ассоциировать с конечным или бесконечным интервалом $(0, a_j), j \in \{1, \ldots, p\}$.

На каждом бесконечном ребре $l_j, j \in \{1, \ldots, p_1\}$ определим минимальный оператор $A_{l_j} f_{l_j} = -f''_{l_j} + Q_{l_j} f_{l_j}, Q_{l_j} = Q^*_{l_j} \in L^1(l_j; \mathbb{C}^{m \times m}),$

$$dom(A_{l_j}) = \left\{ f_{l_j} \in L^2(l_j; \mathbb{C}^m) : \begin{array}{c} f_{l_j}, f'_{l_j} \in AC_{loc}(l_j; \mathbb{C}^m), \\ A_{l_j} f_{l_j} \in L^2(l_j; \mathbb{C}^m), \\ f_{l_j}(0) = f'_{l_j}(0) = 0 \end{array} \right\}.$$

На каждом конечном ребре $e_j, j \in \{p_1+1, \ldots, p\}$ определим минимальный оператор $A_{e_j}f_{e_j} = -f''_{e_j} + Q_{e_j}f_{e_j}, Q_{e_j} = Q^*_{e_j} \in L^1(e_j, \mathbb{C}^{m \times m}),$

$$\operatorname{dom}(A_{e_j}) := \left\{ f_{e_j} \in L^2(e_j; \mathbb{C}^m) : \begin{array}{c} f_{e_j}, f'_{e_j} \in AC_{\operatorname{loc}}(e_j; \mathbb{C}^m), \\ A_{e_j} f_{e_j} \in L^2(e_j; \mathbb{C}^m), \\ f_{e_j}(0) = f_{e_j}(a_j) = f'_{e_j}(0) = f'_{e_j}(a_j) = 0 \end{array} \right\}.$$

Это позволяет ввести минимальный оператор A_{\min} на графе $\mathcal{G}: A_{\min} := \bigoplus_{j=1}^p A_j,$ $\operatorname{dom}(A_{\min}) := \bigoplus_{j=1}^p \operatorname{dom}(A_j).$

Показано, что при сделанных предположениях сингулярный непрерывный спектр произвольного самосопряжённого расширения \widetilde{A} оператора A является пустым, т. е. $\sigma_{sc}(\widetilde{A}) \cap \mathbb{R} = \emptyset$ для каждого самосопряжённого расширения \widetilde{A} . В частности, это верно для расширения $\mathbf{H}_{\alpha} := \mathbf{H}_{\alpha,Q}$, задаваемого граничными условиями типа дельта-взаимодействий во всех вершинах $v \in \mathcal{V}$:

$$\begin{cases} f & \text{непрерывна в } v, \\ \sum_{e \in \mathcal{E}_v} f'_e(v) = \alpha(v) f(v), \end{cases}$$
 (1)

где $\alpha: \mathcal{V} \to \mathbb{C}^{m \times m}, \ \alpha(\cdot) = \alpha(\cdot)^*$ – матричная функция. При $\alpha=0$ условие (1) — хорошо известное условие Кирхгофа.

При дополнительном условии $xQ \in L^1(\mathcal{G}; \mathbb{C}^{m \times m})$ получено следующее обобщение оценки Баргмана для числа отрицательных квадратов оператора $\mathbf{H}_{\alpha} = \mathbf{H}_{\alpha}^*$:

$$\kappa_{-}(\mathbf{H}_{\alpha}) \leq \sum_{e \in \mathcal{E}} \left[\int_{e} x_{e} \cdot \operatorname{tr} \left(Q_{e,-}(x) \right) dx \right] + m |\mathcal{V}|,$$

где $Q_{e,-} := -Q_e E_{Q_e}(-\infty,0) \ge 0$, а [b] обозначает целую часть числа $b \in \mathbb{R}$.

В случае звёздного графа \mathcal{G} найдена формула, выражающая матрицу рассеяния пары $\{\mathbf{H}_{\alpha}, \mathbf{H}_{D}\}$ через функцию Вейля, где \mathbf{H}_{D} — оператор задачи Дирихле на графе \mathcal{G} . Доклад базируется на работах [1-2].

Источники и литература

- 1) Я.И. Грановский, М.М. Маламуд, Х. Найдхардт. Квантовые графы с суммируемыми матричными потенциалами. Доклады Академии наук, 2019, т. 488, № 1, с. 5 10.
- 2) Ya. Granovskyi, M. Malamud and H. Neidhardt. Non-compact Quantum Graphs with Summable Matrix Potentials. Ann. Henri Poincaré 22 (2021), 1-47.