Секция «Дифференциальные уравнения, динамические системы и оптимальное управление»

Об единственности решения задачи тепломассопереноса в тающем снеге 1

Научный руководитель – Папин Александр Алексеевич

Леонова Эвелина Ивановна

Выпускник (бакалавр)

Алтайский государственный университет, Математический факультет, Кафедра дифференциальных уравнений, Барнаул, Россия

E-mail: leonova.eve@gmail.com

УДК 517.95

Рассматривается задача тепломассопереноса в тающем снеге, который представляет собой трехфазную среду, состоящую из воды (i = 1), воздуха (i = 2) и льда (i = 3). Для математического описания процессов используются уравнения сохранения массы, двухфазной фильтрации Маскета-Леверетта и уравнение сохранения энергии [1], [2]:

$$\frac{\partial \rho_i}{\partial t} + div(\rho_i \vec{u}_i) = \sum_{j=1}^3 I_{ji}, \quad i = 1, 2, 3, \quad I_{ji} = -I_{ij}, \quad \sum_{i,j=1}^3 I_{ij} = 0;$$
 (1)

$$\vec{v}_i = -K_0 \frac{k_{oi}}{\mu_i} (\nabla p_i + \rho_i^0 \vec{g}), \quad i = 1, 2, \quad p_2 - p_1 = p_c(s_1, \theta), \quad \sum_{i=1}^2 s_i = 1;$$
 (2)

$$\left(\sum_{i=1}^{3} \rho_{i}^{0} c_{i} \alpha_{i}\right) \frac{\partial \theta}{\partial t} + \left(\sum_{i=1}^{2} \rho_{i}^{0} c_{i} \vec{v}_{i}\right) \nabla \theta = div(\lambda_{c} \nabla \theta) + \nu \frac{\partial \rho_{3}^{0} \alpha_{3}}{\partial t}.$$
(3)

Здесь \vec{u}_i — скорость i-й фазы; ρ_i — приведенная плотность, связанная с истинной плотностью ρ_i^0 и объемной концентрацией α_i соотношением $\rho_i = \alpha_i \rho_i^0$ (условие $\sum_{i=1}^3 \alpha_i = 1$ является следствием определения ρ_i); I_{ji} — интенсивность перехода массы из j-й в i-ю составляющую в единице объема в единицу времени; $\vec{v}_i = \phi s_i \vec{u}_i$ — скорости фильтрации воды и воздуха; ϕ — пористость снега; s_1, s_2 — насыщенности воды и воздуха ($\alpha_1 = \phi s_1, \ \alpha_2 = \phi s_2, \ \alpha_3 = 1 - \phi$); K_0 — тензор фильтрации; k_{0i} — фазовые проницаемости ($k_{0i} = k_{0i}(s_i) \geq 0, \ k_{0i}\big|_{s_i=0} = 0$); μ_i — динамическая вязкость; p_i — давления фаз; p_c — капиллярное давление, \vec{g} — вектор ускорения силы тяжести; θ — температура среды ($\theta_i = \theta, \ i = 1, 2, 3$); $c_i = const > 0$ — теплоемкость i-й фазы при постоянном объеме; $\nu = const > 0$ — удельная теплота плавления льда; λ_c — теплопроводность снега ($\lambda_c = a_c + b_c \rho_c^2, \ \rho_c = \sum_{i=1}^3 \rho_i^0 \alpha_i, \ a_c = const > 0, \ b_c = const > 0$).

В работе [1] доказано существование автомодельного решения. В [2] проведен численный расчет одномерной задачи. Данная работа посвящена исследованию вопроса единственности решения начально-краевой задачи.

 $^{^{1}}$ Работа выполнена в рамках государственного задания Министерства науки и высшего образования РФ по теме «Современные методы гидродинамики для задач природопользования, индустриальных систем и полярной механики» (номер темы: FZMW-2020-0008).

Список литературы

- [1] Папин А.А. Разрешимость модельной задачи тепломассопереноса в тающем снеге // При-кладная механика и техническая физика, 2008, Т. 49, № 4, С. 13-23.
- [2] Сибин А.Н., Папин А.А. Тепломассоперенос в тающем снеге // Прикладная механика и техническая физика, 2021, Т. 62, № 1 (365), С. 109-118.

Научный руководитель – д-р физ.-мат. наук, доц. Александр Алексеевич Папин.