Секция «Дифференциальные уравнения, динамические системы и оптимальное управление»

Задача быстродействия на примере колебательного движения тела

Научный руководитель – Овсянникова Наталья Игоревна

Парахина Яна Владимировна

Студент (бакалавр)

Московский государственный технический университет гражданской авиации, Москва, Россия

E-mail: $parakhina_yana@mail.ru$

Пусть тело G постоянной массы m совершает прямолинейное движение, размерами тела будем пренебрегать.

Координату тела G, отсчитываемую от некоторой точки O, выбранной на прямой, по которой движется тело, обозначим через x. При движении тела G его координата x меняется с течением времени. Производная \dot{x} представляет собой скорость движения центра масс тела G. Предположим, что на тело G действуют две внешние силы: сила трения $(-b\dot{x})$, упругая сила (-kx). Коэффициенты $k\geq 0$ и $b\geq 0$. Тело G снабжено двигателем. Развиваемую двигателем силу воздействия на тело G обозначим через u. Таким образом, по второму закону Ньютона движение тела G с течением времени будет описываться дифференциальным уравнением

$$\ddot{m} = -b\dot{x} - kx + u \tag{1}$$

Обозначив скорость движения через x_2 , т. е. $\dot{x} = \dot{x}_1 = x_2$, запишем этот закон движения в виде следующей системы дифференциальных уравнений:

$$\dot{x}_1 = x_2 \tag{2}$$

$$\dot{x}_2 = -\frac{k}{m}x_1 - \frac{b}{m}x_2 + \frac{1}{m}u\tag{3}$$

Рассмотрим управляемый объект G при условии, что масса m=1, а управляющий параметр подчинен ограничениям $|u| \le 1$ [2]. Будем решать задачу о скорейшем попадании тела G из заданной точки с координатами (a_1, a_2) в начало координат (0, 0). Таким образом, нам необходимо минимизировать время перехода системы (2-3) из начального состояния $x_1(0) = a_1, x_2(0) = a_2$ в начало координат [1].

Для решения задачи быстродействия применим принцип максимума. Будем рассматривать регулярный случай $\lambda_0=1$. Оптимальное управление u(t) является кусочно - непрерывной функцией, принимающей значения либо 1, либо -1 и имеющей не более двух интервалов постоянства. Для отрезка времени, на котором $u(t)\equiv 1$, затем $u(t)\equiv -1$ находим решение системы, минимизирующее время движения.

Сведем задачу оптимального быстродействия к задаче с фиксированным временем и свободными правым концом. Используя метод функции штрафа, учтем ограничения [3].

Введем новую фазовую переменную $x_3=t$ и выполним замену независимой переменной, положив $t=\xi\tau$, где $\tau\in[0,T_0];$ T_0 – выбранное допустимое значение времени. Матрица системы уравнений A имеет вид

$$A = \begin{pmatrix} 0 & 1 \\ -k & -b \end{pmatrix}.$$

Пусть все собственные значения матрицы A, т. е. корни характеристического уравнения

$$\lambda^2 + b\lambda + k = 0, (4)$$

комплексны, а дискриминант $D = b^2 - 4k$ отрицателен.

В это случае уравнением $\ddot{x} + b\dot{x} + kx = u$ описываются вынужденные колебания, где u = u(t) – вынуждающая сила; $\frac{b}{2}$ – коэффициент затухания; \sqrt{k} – собственная частота системы, т. е. частота, с которой совершались бы свободные колебания системы в отсутствие сопротивления среды (при b = 0). Если собственные числа матрицы A комплексны, то число точек переключения управления может быть различным. Фазовые точки в этом случае движутся по спиралям или по полуокружностям.

Пусть теперь собственные значения матрицы A, т. е. корни характеристического уравнения, действительны. Они неположительные, поскольку b > 0, k > 0.

Если собственные числа действительны, то по теореме Фельдбаума оптимальное управление будет иметь одну точку переключения.

Источники и литература

- 1) Алексеев В.М., Тихомиров В.М., Фомин С.В. Оптимальное управление. М.: Наука, 1979.
- 2) Андреева Е.А., Пустарнакова Ю.А., Семыкина Н.А. и др. Модели управляемых систем. Ч.1, 2. Тверь: ТвГУ, 1990.
- 3) Андреева Е.А., Цирулева В.М. Вариационное исчисление и методы оптимизации. Тверь, 2001.