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1. Introduction

This article investigates the solvability of the equation tan(x) — x = a in elementary
functions. In other words, if we start off with functions e* and In(a) along with the identity
function, and apply a finite number of arithmetic operations as well as composition, is it possible
to get the reverse map of the equation (i.e. f(a) such that tan(f(a))— f(a) = a for any a)? Note
that all the trigonometric functions as well as powers and their reverse maps can be expressed
in terms of the exponent and logarithm, which is why we only need to consider the last two.

2. Generalization of Abel-Ruffini theory

In this section, some notions from Abel-Ruffini theory will be generalized.

2.1. General notions

Suppose we are trying to solve an equation f(z) = a in the complex plane. If f(z) is
holomorphic and non-constant, then, by the well-known uniquenuess principle, for any a, the
set of roots is discrete. In other words, we have several branches of the reverse map. Let now
a draw a closed curve in the complex plane. Then the roots also draw curves which, however,
aren’t necessarily closed. By a well known theorem from complex analysis, if the derivative of
a holomorphic function is not zero, then it is a bijection in some neighborhood. Let’s call the
points where f’(z) = 0 for some root critical. Let’s only consider curves, without critical points.
Then the roots will not will not merge, so that the permutation of roots after a completes the
curve is well defined.

2.2. Induced permutations

If we change the curve very slightly, and there aren’t any critical points very close, the
trajectories of the roots will not change much, and, in particular, when a comes back, the
permutation of roots will be identical. Therefore, if the area enclosed by the curve doesn’t
contain any critical points, then we can pull the curve to a constant map, so that none of the
roots will have permuted. Therefore, if we want to induce a nontrivial permutation of roots, it
suffices to consider curves which move up to a critical point, make a circle around it and then
come back. Then, multiplication of these curves (as defined in algebraic topology) will give all
achievable permutations of roots.

2.3. Permutations induced by elementary functions

Jlemma 1. The group induced by elementary functions is cyclic
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HokazareabcTBo. Let’s calculate the permutations achievable by the logarithm and exponent.
Since the exponent is a univalent function, when a moves along a closed path, so does e®.

Logarithm, on the other hand, adds 27 times the index of the curve.
Caencrsue 1. The group induced by elementary functions is abelian

CaencrBue 2. For any N, the group induced by elementary functions and their compositions
of depth not exceeding N is solvable

HokazaTeabcTBo. The commutant of an abelian group is trivial and elementary functions
induce an abelian group from the identity curves (i.e. curves where each root draws a closed
path). Hence, if we take the identity curves and apply elementary functions to them we will get
an abelian group (this follows from the previous corollary). Then, taking its commutant, we
get the trivial group again. Applying elementary funcionts to it can only generate an abelian
group, so the group generated by functions of depth not greater than two is solvable. Doing this
procedure N times (or reasoning by induction) proves the corollary. The last corollary means
that if we can choose some curves, such that the group generated by their induced permutations
is unsolvable, we will have proved the unsolvability in elementary functions.

3ameuanne 1. Calculating the group induced by a given set of curves is rather difficult. This
could be automated and done by a computer. Also, if the number of critical points is finite, there
is only a finite number of curves, and therefore the whole proof could be done by a machine.

Jlemma 2. The complete group of permutations acts transitively on roots

HokazareabcTBo. If we take any root and move it along any path that connects it with
another root, a(t) = f(z(t)) will draw a closed curve, because both z(0) and x(1) are roots for
the same a (this path, however, must avoid points where f(z) is critical, but since this set is
discrete (otherwise f is constant), it is always possible).

3. Main result
In this section, we will investigate the solvability of tan(z) — = = a.
Jlemma 3. The critical points of equation tan(x) — x = a 7k, k € Z

JlokazareabcTBO.

1

(tan(z) — x) = o ?(2)

—1=0&cos?(r)=1<zecrkkcZ

But tan(wk) — 7k = —7k so the critical points for this equation are exactly 7k, k € Z.

Jlemma 4. These critical points are of third order

HoxkazarenbcrBo. Taking the second derivative, we obtain COSS“;((:;% which also vanishes at

critical points. The third derivative, however, doesn’t:

2 6 sin 2
| §sin (x)

cos (1) p— =1life=nkkeZ
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CaenctBue 3. Thus, as it is known from complex analysis, if a makes a loop around any of
these critical points, three roots will permute cyclically (and in the same direction as a, i.e. if
a rotates clockwise, so will the roots).

Note that when a comes up to a critical point via real axis, there is only one real root
close to the point where the derivative vanishes (because, as can be seen from figure 1 on page
4, real roots never merge on the real axis), so that we have one real and non-real roots that
permute cyclically. It would therefore be very convenient if there were only two non-real roots
in the complex plain altogether. Fortunately, as it turns out, that is the case, the proof of which
follows.

JIemMma 5.
tan(z) — z = 0 has only real roots

JlokazareabCcTBO.
tan(z) — 2z = 0 < sin(z) — z cos(z) = 0 because cos(z) =0 = sin(z) #0
so it can’t be a solution, so we can divide the last equation by cos(z). Let z = = + iy, then
sin(z + iy) = sin(z) cosh(y) + i cos(z) sinh(y)

$0
| sin(z + 4y)|* = sin®(z) cosh®(y) + cos?(z) sinh?(y) = sin?(x) + sinh?(y)

Similarly,
| cos(x + iy)|? = cos®(x) cosh?(y) + sin’(x) sinh?(y) = cos®(x) + sinh?(y)

Recall now Rouché’s theorem: if two holomorphic functions f and g, holomorphic in some region,
are such, that on the boundary of that region |g(z)| < |f(z)], then in that region equations
f(z) =0and f(z) + g(z) = 0 have the same number of solutions. Setting

F(2) = —zcos(z), g(z) = sin(2)
and for the region choosing a rectangle with center at zero and right upper corner at
mk+iM, ke NN M e R

the requirements of the theorem are satisfied (if M is large enough). Indeed, on the edges on
the left and on the right, we have

19(2)|? = sin®(7k) + sinh?(y) = sinh?(y) <
< 1+ sinh®(y) = cos?(mk) + sinh?(y) < |zcos(2)|* = [f(2)]* (1)

since
|z2| > Rez=m

On the top and on the bottom sides,
9(=)2 < 1+ sinh?(M)

and
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|£(2)]* > |2|*sinh*(M) > M?sinh®(M) > 1+ sinh®*(M)

for sufficienly large M (we won’t need the exact value anyway). Hence Rouché’s theorem holds
and so tan(z) — z has 2k + 1 roots, because z cos(z) has roots

{0,£7/2,...,£(nk —7/2)}

But we know 2k + 1 roots already: 0 is a critical point, hence a root of third order, and also we
have the intersections of the graph y = tan(x) with y = z in intervals (mm — 7/2,7m + 7/2),
—k<m<k,m#0,m € Z (see figure 1 on page 4 to visualize this picture). Therefore, there
are no non-real roots, because the rectangle can be chosen as large as needs be. We are now
ready to prove our main result. Consider now the equation tan(z) — z = a. If we tend a to zero,
we know that we will get three roots merging also in zero.

Puc. 1. Real roots

Hence, if a is real and small, but not zero, there will be two non-real roots and one real (in small
neighbourhood of zero). Moreover, since the Taylor series for tan(z) has only real coefficients,
the non-real roots will be conjugate. This situation will not change if we move a along the real
axis, until we reach a critical point. Then, if we move a around the critical point along the
arch of a tiny semicircle, that lies below the real axis, a will rotate about the critical point
180 degrees anticlockwise. Therefore the roots will permute in such a way that will send the
real root either above or below the real axis (strictly speaking this is not yet a permutation,
because a has not completed a loop). If the real root has gone below the real axis, then choose
the opposite semicircle instead, i.e. the one above the real axis. Then the real root will go
above the real axis. Thus, the root above the real axis must have become real, because as a was
complex, so must have been the roots. That is, none of them could have crossed the real axis.
Therefore, since in the end we have to end up with only one root in each semiplane, the upper
being occupied by the root that was real in the beginning, we must have that the one that was
in the upper semiplane is now real. The one in the bottom plane has therefore remained there.
This procedure could be thought of as simply swapping the real root with the one in the upper
semiplane. Let’s now fix a point, say —1, move a there, and name the two complex roots c;
and co, ¢; being the one in the upper semiplane, and c; - its complex conjugate. Name the real
roots naturally, starting from zero (i.e. call the real root, that will tend to zero as a does 2z,
the one to the right z; and so on). In the beginning, the real roots, starting from the first, are
arranged as such: (21, 22, ...). Consider now a path starting from —1, that goes along the real
axis to the left, and as it comes close to a critical point, avoids it along a small semicircle below
or above the real axis (choose the one that swaps the real root with the upper one).

In this and the following diagrams, the upper picture is the path drawn by a and the lower one shows
the trajectories of the roots.

Then it comes up to the n* critical point loops around it in a small circle and comes back along
the same path it came up. Let’s see what it does to the roots: when the first critical point is
passed, ¢; swaps with z;. Then z; swaps with 2. Thus, by the time a comes to the n'* critical
point, the roots will be configured as follows:

(C1y 21,22y« oy Zn—2y Zny - - )

Z,—1 will be in the upper semiplane, and, as a makes a loop, z,, z,_1 and ¢y permute cyclically
(it can be envisaged as two swaps, because a moves along two semicircles), though we haven’t
calculated how exactly. But there is no need - we know that the permutation will be non-trivial,
and since Ajz is generated by any cycle, perhaps making a loop twice, we can create the following
configuration:
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(617217 <oy ”n—3,2n—2,C2, .. )

Now z, is hanging in the upper semiplane and z,_; in the lower. Since the path a takes from
now is the reverse of the one it took before the loop, all the swaps will be reversed, but since
they only swapped two roots at a time, they will simply be the same, swapping the real root
with the one in the upper semiplane. Thus, first z, and z,_5 will be swapped, then z,_, and
Zn—3 and so on. Finally, when a completes the path, the configuration will be as such:

(21,22, -+ -y Zn—9, Zn, C2y - - )

c1 will be back where it was, and z,_; in the lower semiplane. If we now do the same loop for
the (n + 1) point, the configuration will be

(21,225« oy 29, Zny Znls Zn1s -« -)

With both complex roots back where they were. Hence we have a permutation (n—1,n+1,n).
Arather cumbersome calculation (the kind of calculation that is conventionally left as an exercise
for the reader with a hint that the alternating group is simple) shows that consecutive 3-cycles
generate the alternating group, which is unsolvable. Thus, the equation tan(x) — z = a is not
solvable in elementary functions.

Ncrouynukm u jaureparypa
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Puc. 2. The first part of the path

Puc. 3. The intermediate part of the path

Puc. 4. The last part of the path



	Introduction
	Generalization of Abel-Ruffini theory
	General notions
	Induced permutations
	Permutations induced by elementary functions

	Main result

