Секция «Математическая логика, алгебра и теория чисел»

Линейные отображения, сохраняющие отношения Грина на моноиде квадратных матриц

Научный руководитель – Гутерман Александр Эмилевич

Максаев Артем Максимович

Acпирант

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра высшей алгебры, Москва, Россия E-mail: artmak95@mail.ru

Отношения, введенные Дж. Грином в 1951 году в работе [1] и позже названные в его честь, — это пять отношений эквивалентности, рассматриваемые на произвольной полугруппе, которые естественным образом возникают при изучении идеалов полугруппы и играют фундаментальную роль. Приведем определения отношений Грина для случая моноида.

Определение. Пусть \mathcal{M} — моноид. Будем писать, что элементы $a,b\in\mathcal{M}$ связаны одним из отношений Грина:

- (i) $a \mathcal{R} b$, если $a \mathcal{M} = b \mathcal{M}$;
- (ii) $a \mathcal{L} b$, если $\mathcal{M} a = \mathcal{M} b$;
- (iii) $a \mathcal{J} b$, если $\mathcal{M} a \mathcal{M} = \mathcal{M} b \mathcal{M}$;
- (iv) $a \mathcal{H} b$, если $a \mathcal{R} b$ и $a \mathcal{L} b$;
- (v) $a \mathcal{D} b$, если $\exists c \in \mathcal{M} : a \mathcal{R} c$ и $c \mathcal{L} b$.

Авторы работы [2], мотивированные повышенным интересом к тропической алгебре в последние годы, классифицировали биективные линейные отображения, сохраняющие (или строго сохраняющие) каждое из отношений Грина на моноиде $n \times n$ матриц над антинегативным полуполем. Таким образом, классификация была осуществлена для всех полуполей, кроме полей. Это является необычным, в свете того, что развитие теории полуполей во многом основано на обобщениях классических результатов теории полей. Тем самым, возникает вопрос, как устроены соответствующие отображения над полями. Цель настоящего доклада — ответить на поставленный вопрос.

Для этого прежде всего необходимо удобное описание отношений Грина для моноида $n \times n$ матриц $M_n(\mathbb{F})$ над полем \mathbb{F} . Опираясь на такое описание, в докладе будет представлена полная классификация линейных отображений, сохраняющих эти отношения, при некоторых дополнительных условиях, а именно:

- для всех отношений $(\mathcal{R}, \mathcal{L}, \mathcal{J}, \mathcal{H}, \mathcal{D})$ при условии биективности отображения;
- для отношений $\mathcal{R}, \mathcal{L}, \mathcal{H}$ при условии, что поле \mathbb{F} содержит корни всех многочленов степени n из пространства $\mathbb{F}[x]$ (в частности, для алгебраически замкнутого поля);
- ullet для отношений \mathcal{J}, \mathcal{D} при отсутствии дополнительных условий;
- \bullet для отношения \mathcal{H} над произвольным полем задача сводится к известной проблеме описания линейных отображений, сохраняющих невырожденность.

Кроме того, в случае произвольного поля будут приведены примеры нестандартных отображений, сохраняющих отношения $\mathcal{R}, \mathcal{L}, \mathcal{H}$, что демонстрирует существенность дополнительных условий на поле (а также сложность подобной классификации в самом общем случае).

Доклад основан на совместной с А.Э. Гутерманом, М. Джонсон и М. Камбитесом работе [3]. Автор выражает благодарность за ценные обсуждения своему научному руководителю — Александру Эмилевичу Гутерману.

Источники и литература

- 1) J. A. Green. On the structure of semigroups. Annals of Math. 54 (1951), 163-172.
- 2) A. Guterman, M. Johnson, M. Kambites. Linear isomorphisms preserving Green's relations for matrices over anti-negative semifields, Linear Algebra Appl. 545 (2018), 1-14.
- 3) A. Guterman, M. Johnson, M. Kambites, A. Maksaev. Linear functions preserving Green's relations over fields, Linear Algebra Appl. 611 (2021), 310-333.