Полнота и финитная аппроксимируемость модальных логик, аксиоматизируемых формулами глубины один, в окрестностной семантике.

Научный руководитель – Шехтман Валентин Борисович

Копнев Кирилл Михайлович

Студент (бакалавр)

Московский государственный университет имени М.В.Ломоносова, Москва, Россия E-mail: kmkopnev@mail.ru

Окрестностная семантика для модальных логик впервые была сформулирована Дана Скоттом [1] и Ричардом Монтегю [2] независимо друг от друга в 1970 году. Поскольку окрестностная семантика является обобщением семантики Крипке, её удобно использовать при изучении свойств ненормальных логик. Так, например, многие ненормальные логики оказываются полными относительно окрестностных шкал, в то время как относительно шкал Крипке они не полны. Кроме того, окрестностная семантика представляет интерес для формальной эпистемологии и теории игр, поскольку позволяет моделировать рассуждения нескольких эпистемических субъектов. Поскольку основными объектами в окрестностной семантике являются множества и семейства множеств, то введение определенных ограничений на окрестностные модели позволяет переходить к изучению других математических структур. Одним из наиболее важных примеров подобных структур являются топологические структуры, которые в контексте модальной логики обладают широким кругом приложений в информатике, математической лингвистике и основаниях математики. Больше об окрестностной семантике в [4].

Дэвид Льюис в [3] предлагает доказательство полноты и финитной аппроксимируемости всех логик, аксиоматизируемых конечным числом формул глубины 1. Тем не менее, в доказательстве одной из лемм имеется неустранимый пробел, который делает доказательство ошибочным.

Определение 1.

Глубина формулы $d(\varphi)$ формулы φ определяется по индукции:

- 1. d(p) = 0;
- 2. $d(\varphi \wedge \psi) = max\{d(\varphi), d(\psi)\};$
- 3. $d(\neg \varphi) = d(\varphi)$;
- 4. $d(\Box \varphi) = 1 + d(\varphi)$.

Теорема Д.Льюиса, при доказательстве которой была допущена ошибка, формулируется следующим образом:

Теорема 1. Если L – логика, аксиоматизируемая формулами глубины 1, и $L \not\vdash \varphi$, то существует шкала $F \in \mathbf{F}_L$ такая, что $F \not\vdash \varphi$ и \mathbf{F}_L – класс всех шкал, на которых L общезначима. Более того, мощность шкалы F конечна и может быть оценена c помощью формулы φ .

Ошибка допущена в Лемме 11 и заключается в некорректном повторном применения Леммы 7.

Указанная теорема также является важной в рамках философско-эпистемического проекта, разрабатываемого Д.Льюисом в [6] и посвященного исследованию контрафактических рассуждений.

Несмотря на отсутствие доказательства полноты и финитной аппроксимируемости указанного класса логик в окрестностной семантике, существует алгебраическое доказательство этого же факта, представленное в работе Тимоти Сюрендонка [5].

В процессе доказательства Д.Льюис использовал метод канонических моделей, а также метод фильтрации.

Определение 2. Каноническая модель логики L – это $M_L = \langle W_L, N_L, V_L \rangle$, где:

- 1. $W_L = \{ \Gamma \mid \Gamma \text{максимальное L} \text{непротиворечивое множество} \};$
- 2. $\forall \Gamma \in W_L \forall \varphi \in Fm : |\varphi|_L \in N_L(\Gamma) \Leftrightarrow \Box \varphi \in \Gamma;$
- 3. $\forall p \in Var, \ V_L(p) = |p|_L$.

Фильтрация определяется посредством введения классов эквивалентности по отношению \sim_{Σ} , где Σ – множество формул. $w\sim_{\Sigma}v$ тогда и только тогда, когда в w и v истинны одни и те же формулы из Σ . Соответственно $\widetilde{w}_{\Sigma}=\{v\mid w\sim_{\Sigma}v\}$ и $\widetilde{X}_{\Sigma}=\{\widetilde{w}_{\Sigma}\mid w\in X\}$. Множество Σ называется замкнутым по подформулам, если для любой формулы $\varphi\in\Sigma$ все подформулы φ принадлежат Σ .

Определение 3. Пусть $M = \langle W, N, V \rangle$ - окрестностная модель и Σ - множество формул, замкнутое по подформул. Фильтрацией модели M через множество формул Σ будем называть модель $M_f = \langle W_f, N_f, V_f \rangle$ такую, что:

- 1. $W_f = \widetilde{W}$;
- $2. \ \forall w \in W \forall \Box \varphi \in \Sigma : |\varphi|_M \in N(w) \Leftrightarrow |\widetilde{\varphi}|_M \in N_f(\widetilde{w});$
- 3. $\forall p \in Var : V(p) = \widetilde{V}(p)$.

Можно доказать вариант теоремы Д.Льюиса для частных случаев модальных логик, например для логик $L_1 = E + \Box \varphi \rightarrow \varphi, L_2 = E + \varphi \rightarrow \Box \varphi, L_3 = E + (\Box \varphi \wedge \Box \psi) \rightarrow \Box (\varphi \wedge \psi), L_4 = E + \Box (\varphi \wedge \psi) \rightarrow \Box \varphi$ и любых их объединений. E обозначает минимальную модальную логику состоящую из множества всех пропозициональных тавтологий, замкнутых по правилам $(MP) \varphi, \varphi \rightarrow \psi \vdash \psi, (RE) \varphi \leftrightarrow \psi \vdash \Box \varphi \leftrightarrow \Box \psi$.

В работе установлена верность следующей теоремы:

Теорема 2.

Пусть L – модальная логика из множества $\{L_1, L_2, L_3, L_4\}$ или представляется в виде объединения некоторых из этих логик. Тогда L полна и финитно аппроксимируема.

Источники и литература

- 1) Scott, D. Advice in modal logic. In Philosophical Problems in Logic: Some Recent Developments, 143-173. D. Reidel, 1970.
- 2) Montague, R. Universal grammar. Theoria 36, 373-398, 1970.
- 3) Lewis, D. Intensional logics without iterative axioms. Journal of Philosophical Logic 3, 457 466, 1974.
- 4) Pacuit, E. Neighborhood Semantics for Modal Logic. Springer, 2017.
- 5) Surendonk, T.J. Canonicity for Intensional Logics Without Iterative Axioms. Journal of Philosophical Logic 26, 391–409,1997.
- 6) Lewis, D. Counterfactuals. Cambridge, MA: Harvard University Press, 1973.