Острое умственное утомление и стоимость переключения задач

Научный руководитель – Величковский Борис Борисович *Чистяков Игорь Максимович*

Acпирант

Московский государственный университет имени М.В.Ломоносова, Факультет психологии, Кафедра психологии труда и инженерной психологии, Москва, Россия E-mail: cim 95@mail.ru

Уже достаточно давно известно о негативном влиянии состояния утомления на эффективность решения когнитивных задач, атрибутируемая в том числе нарушениям функций когнитивного контроля. [1, 4, 5] Также широко известен негативный эффект переключения между задачами на эффективность их выполнения. [3]

Тем не менее, взаимодействие данных факторов до сих пор не было широко исследовано, возможно, ввиду интуитивности данного предположения. Однако именно оно и легло в основу **основной гипотезы** настоящего исследования: степень выраженности утомления испытуемых будет оказывать негативный эффект на эффективность переключения.

Методика исследования

Исследование проводилось по квазиэкспериментальной схеме. Аналогом независимой переменной являлось функциональное состояние испытуемого, другой независимой переменной выступило наличие переключения в текущей пробе. В качестве зависимых переменных выступили время реакции и точность ответов испытуемых. Также в качестве дополнительной переменной контролировалась сложность задачи как конгруэнтность или инконгруэнтность предполагаемого моторного ответа в пробе.

Описание выборки

Исследование проводилось на базе факультета психологии МГУ им. М. В. Ломоносова. В выборку вошли 61 человек, средний возраст которых составил 21.9 года (SD.=2.7). Мужчины составили 46% выборки.

Все испытуемые имели нормальное зрение или скорректированное до нормального и не имели патологий, приводящих к нарушению нормальной фокусировки на объекте.

Описание процедуры

Задания представляли собой задачи на классификацию стимулов: определение чётности/нечётности или гласности/согласности предъявляемых цифр и букв соответственно.

Исследование состояло из двух серий: тренировочной (32 пробы) и экспериментальной (256 проб), проводимых непосредственно друг за другом. Испытуемые приглашались либо в начале, либо в конце рабочего дня, что, согласно нашему предположению, должно было дать необходимый разброс по степени выраженности утомления. Также с испытуемыми обсуждалась их загруженность в течение дня в попытке предсказать большую или меньшую выраженность состояния утомления.

Актуальное функциональное состояние испытуемых оценивалось до начала опыта с помощью опросника для оценки острого умственного утомления Леоновой-Савичевой, а также теста САН Доскина.

Стимулы предъявлялись парами (буква и цифра) на белом фоне в центре экрана диагональю 19". Порядок предъявления задач и взаимное расположение стимулов в паре определялись случайным образом, что позволило снизить влияние эффекта подготовки к заданию [3]. Каждому новому предъявлению стимулов предшествовала текстовая подсказка длительностью 750 мс, задающая целевой стимул в пробе. Подсказка представляла собой слово «Буква» или «Цифра» в соответствии с целевым стимулом в текущей пробе. Слова имеют эквивалентную длину и частотность использования, что даёт основания считать разницу усилия по восприятию обеих подсказок незначительной.

На решение каждой отдельной задачи испытуемому отводилось 5 секунд, нажатие клавиши ответа инициировало немедленное начало следующей пробы. Стимулы предъявлялись с помощью программного обеспечения E-Prime 2.0 производства Psychology Software Tools, Inc., США.

Обработка данных

Для обработки результатов использовались язык статистического программирования R v3.4.3 и среда разработки RStudio v1.0.143.

В ходе подготовки данных к анализу были удалены выбросы по времени реакции. Стоимость переключений оценивалась как разность между средними успешностью и временем прохождения проб с переключением и без. Наличие переключения в пробе определялось через отличие целевого стимула в актуальной пробе по сравнению с предыдущей.

Результаты

В ходе оценки было получено унимодальное распределение оценок умственного утомления со скошенностью, равной 0.644.

Ввиду этого выборка разбивалась на группы с более и менее выраженным утомлением посредством медианного рассечения.

Нами был проведён одномерный трёхфакторный дисперсионных анализ с целью более детального изучения эффектов утомления, в который, помимо факторов утомления и переключения, вошёл также фактор конгруэнтности стимулов.

Были проверены две модели, в которых зависимыми переменными выступали время реакции и точность ответов испытуемых, а независимыми факторами - утомление, конгруэнтность предполагаемого моторного ответа и наличие переключения в пробе.

Утомление приводит к значимому снижению ($F=90.834,\,p<0.001$) времени реакции испытуемых, как и конгруэнтность стимулов ($F=4.676,\,p=0.031$), в то время как наличие переключения в пробе - к её увеличению ($F=181.975,\,p<0.001$).

Также утомление приводит к значимому падению точности ответов ($F=5.367,\,p=0.021$), как и наличие переключения в пробе ($F=17.387,\,p<0.001$) и отсутствие конгруэнтности в ней ($F=89.053,\,p<0.001$). При этом наблюдается значимое взаимодействие факторов конгруэнтности и утомления ($F=11.087,\,p<0.001$), показывающее, что негативные эффекты утомления проявляются только для неконгруэнтных проб.

Также известно о неравномерности распределения эффектов утомления по времени, ввиду чего нами был проведён винцентильный анализ данных, в ходе котрого ответы испытуемых были разделены на пять групп по времени реакции (от 20% самых быстрых до 20% самых медленных). Значимые результаты анализа представлены в Таблице 1, а также на Рисунках 2 и 3.

При более подробном анализе взаимодействия факторов становится видно, что утомление оказывает свои эффекты на точность ответов в сверхбыстрых неконгруэнтных пробах, особенно ярко проявляясь при переключениях задач (см. Рисунок 3), в то время как время реакции показывает свою зависимость от утомления при медленных и сверхмедленных ответах при наличии конгруэнтности проб (см. Рисунок 4).

Предположение о достаточности контроля времени проведения эксперимента как способа управления функциональным состоянием испытуемых не оправдало себя, как видно из полученного распределения индекса умственного утомления.

В ходе проведённого исследования были получены данные, явно свидетельствующие о негативном влиянии на эффективность переключения задач как острого умственного утомления, так и переключения в пробе. При этом наличие конгруэнтность пробы оказалась достаточной, чтобы полностью нивелировать влияние утомления на точность ответов испытуемых.

Слабость наблюдаемых эффектов может быть вызвана наблюдением остаточной стоимости переключения (residual cost) [3], ввиду длительности предъявления подсказки.

Выводы

Таким образом, собранные данные видятся недостаточными для отвержения исходной гипотезы об амплификации утомлением влияния переключений на эффективность решения задач. Настоящее исследование следует рассматривать в качестве пилотного, по-казывающего необходимые изменения в экспериментальном дизайне:

- 1. Использование интраиндивидуальной схемы исследования.
- 2. Прямое управление функциональным состоянием посредством методик на индукцию утомления в экспериментальной группе.
- 3. Усложнение экспериментального задания. В частности, использование графической подсказки вместо текстовой, предъявляемой одновременно со стимульным материалом, что, как мы полагаем, должно усилить наблюдаемые эффекты переключения.

Источники и литература

- 1) Леонова А. Б. Психодиагностика функциональных состояний человека. М.: Изд-во Московского университета, 1984
- 2) Kahneman D., Beatty J. Pupillary responses in a pitch discrimination task // Perception and Phychophysics, 1967. \mathbb{N}_2 . P.101–105
- 3) Monsell S. Task switching // TRENDS in Cognitive Sciences Vol.7 No.3, 2003. P. 134–140
- 4) Plukaard S. et al. Cognitive flexibility in healthy students is affected by fatigue: An experimental study //Learning and Individual Differences. -2015. -T. 38. -C. 18-25
- 5) Van der Linden D. The urge to stop: The cognitive and biological nature of acute mental fatigue //Cognitive fatigue: Multidisciplinary perspectives on current research and future applications. 2011. C. 149-64