Simulation of Dissolution Sequestration and Trapping Mechanisms of CO2

Научный руководитель – Глебова Любовь Владимировна

Чжан Лиюань

Graduate (master)

Московский государственный университет имени М.В.Ломоносова, Геологический факультет, Кафедра теоретических основ разработки месторождений нефти и газа, Москва, Россия

E-mail: zhanqliyuan.789@me.com

Carbon dioxide (CO_2) is one of the primary gases responsible for the greenhouse effect, and reducing anthropogenic CO_2 in the atmosphere is crucial for mitigating climate change. Sequestering CO_2 in suitable underground geological formations may be a viable method to decrease atmospheric CO_2 concentrations. This study comprehensively simulates the dissolution sequestration and trapping mechanisms of CO_2 , aiming to evaluate the effectiveness and feasibility of long-term carbon storage solutions. Utilizing the CMG-GEM compositional simulator for case studies on geological formations, the research investigates the dynamics of CO_2 dissolution in aqueous environments and its subsequent mineralization, thereby gaining insights into the physical and chemical interactions that facilitate CO_2 capture. Results indicate that the primary factors affecting dissolution sequestration are pressure, temperature, and the surface area in contact with the aqueous body.

References

- 1) Nwidee LN, Theophilus S, Barifcani A, Sarmadivaleh M, Iglauer S. EOR Processes, Opportunities and Technological Advancements. Chem Enhanc Oil Recover a Pract Overv 2016:3–52. https://doi.org/10.5772/64828.
- 2) Orr FM, Heller JP, Taber JJ. Carbon dioxide flooding for enhanced oil recovery: Promise and problems. J Am Oil Chem Soc 1982;59:810A-817A. https://doi.org/10.1007/BF02634446.
- 3) Alvarado V, Manrique E. Enhanced oil recovery: An update review. Energies
- 4) Senapati S, Berkowitz ML. Molecular Dynamics Simulation Studies of Polyether and Perfluoropolyether Surfactant Based Reverse Micelles in Supercritical Carbon Dioxide. J Phys Chem B 2003;107:12906–16. https://doi.org/10.1021/jp035128s.
- 5) Knight BL. Reservoir Stability of Polymer Solutions. AIChE Symp Ser 1973:40–2.