Уточнение кристаллической структуры природного сфенисцидита (NH4)Fe3+2(PO4)2(OH)·2H2O из Керченского железорудного бассейна

Научный руководитель - Аксёнов Сергей Михайлович

Вайтиева Юлия Алексеевна

Студент (специалист)

Российский государственный геологоразведочный университет имени Серго Орджоникидзе, Москва, Россия $E\text{-}mail\text{:}\ yulia.vaitieva@yandex.ru}$

Сфенисцидит — природный фосфат трехвалентного железа с формулой $(NH_4)Fe^{3+}_2(PO_4)_2(OH)\cdot 2H_2O$, который относится к группе лейкофосфита и является NH_4 -доминантным представителем. Первоначально сфенисцидит был обнаружен в почвенном профиле в районе гнездования пингвинов на острове Элефант (остров Мордвинова), Британская антарктическая территория [3]. Минерал образовался в результате взаимодействия растворов фосфата аммония из гуано пингвинов со слюдистыми и хлоритовыми минералами в почве, а название минерала связано с латинским названием пингвинов — Sphenisciformes.

Изученный образец сфенисцидита найден в Керченском железорудном бассейне и характеризуется высоким содержанием калия и алюминия. Эмпирическая формула по данным микрозондового анализа: $(NH_4)_{0.55}K_{0.41}Ca_{0.02}Mg_{0.03}Fe_{1.20}Al_{0.80}P_2O_{8.05}(OH)\cdot H_2O$. Кристаллическая структура изучена методом рентгеноструктурного анализа с использованием монокристального дифрактометра Rigaku XtaLAB Synergy-S (HyPix детектор). Параметры моноклинной элементарной ячейки: a=9.8334(5) Å, b=9.6878(5) Å, c=9.7761(5) Å, $\beta=102.702(4)^\circ$; пр. гр. $P2_1/n$. Модель структуры уточнена до итогового значения $R_1=4.59\%,\ wR_2=10.89\%,\ GoF=1.11\%$ с использованием $742I>3\sigma(I)$.

Кристаллическая структура сфенисцидита из Керченского бассейна (полуостров Крым) в целом аналогична природным синтетическим аналогам группы лейкофосфита [1,2], а ее основу составляют октаэдрические четырехядерные [$M_4\phi_{20}$]-кластеры ($M={\rm Fe}^{3+}$; $\phi={\rm O}^{2-}$, ${\rm OH}^-$, ${\rm H}_2{\rm O}^0$). Два ${\rm Fe}2\phi_6$ -октаэдра (${\rm <Fe}2-\phi>=2.020$ Å) имеют общее ребро OH–OH и образуют центральный октаэдрический димер, в то время как дополнительные ${\rm Fe}1\phi_6$ -октаэдры (${\rm <Fe}1-\phi>=2.008$ Å) связаны с димером через общую OH-вершину (рис. 1а). Соседние [$M_4\phi_{20}$]-кластеры объединяются с помощью PO₄-тетраэдров (${\rm <P-O>}=1.529$ Å и 1.533 Å) с образованием гетерополиэдрического микропористого квазикаркаса (рис. 1б). Крупные полости и широкие каналы заполнены внекаркасными одновалентными катионами, в частности, ${\rm NH}_4^+$ -группой, которая частично замещается катионом ${\rm K}^+$, и, вероятно, незначительным количеством ${\rm H}_3{\rm O}^+$, а также внекаркасной молекулой воды. Уточненная кристаллохимическая формула сфенисцидита такова (Z = 4): [${\rm (NH}_4)_{0.73}{\rm K}_{0.27}$]{(${\rm Fe}_{1.2}{\rm Al}_{0.8}$)(${\rm PO}_4$)2(OH)(${\rm H}_2{\rm O}$)}- ${\rm H}_2{\rm O}$, где фигурные скобки обозначают состав гетерополиэдрического квазикаркаса.

Источники и литература

- 1) Cavellec M., Riou D., Ferey G. Synthetic spheniscidite. Acta Crystallogr. C. 1994. 50:1379–1381.
- 2) Choudhury A., Natarajan S. A synthetic iron phosphate mineral, spheniscidite, [NH4]+[Fe2(OH)(H2O)(PO4)2]-H2O, exhibiting reversible dehydration. Proc. Ind. Acad. Sci. 1999. 111:627–637.

3) Wilson M.J., Bain D.C. Spheniscidite, a new phosphate mineral from Elephant Island, British Antarctic Territory. Mineral Mag. 1986. 50:291–293.

Иллюстрации

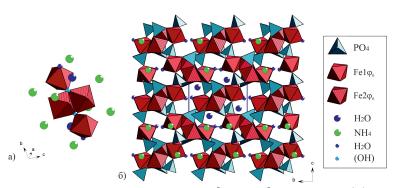


Рис. : Рис. 1. Четырехядерные октаэдрические $[M4\phi20]$ -кластеры (а) и гетерополиэдрический микропористый квазикаркае в структуре сфенисцидита (б).