C дискретной аддитивной подгруппой $\Gamma \subset \mathbb{C}$ можно связать стандартный набор функций Вейерштрасса \wp, ζ и σ по формулам

$$\wp(z;\Gamma) = \frac{1}{z^2} + \sum_{u \in \Gamma \setminus \{0\}} \left(\frac{1}{(z-u)^2} - \frac{1}{u^2} \right),$$

$$\zeta(z;\Gamma) = \frac{1}{z} + \sum_{u \in \Gamma \setminus \{0\}} \left(\frac{1}{z-u} + \frac{1}{u} + \frac{z}{u^2} \right),$$

$$\sigma(z;\Gamma) = z \prod_{u \in \Gamma \setminus \{0\}} \left(1 - \frac{z}{u} \right) e^{\frac{z}{u} + \frac{z^2}{2u^2}}.$$

Кроме того, функции $g_2(\Gamma)=\sum_{u\in\Gamma\setminus\{0\}}\frac{60}{u^4},\ g_3(\Gamma)=\sum_{u\in\Gamma\setminus\{0\}}\frac{140}{u^6}.$ устанавливают взаимнооднозначное соответствие между дискретными

подгруппами в \mathbb{C} и парами $(g_2,g_3)\in\mathbb{C}^2$. Наконец, с парой $(g_2,g_3)\in\mathbb{C}^2$ связана алгебраическая кривая, аффинная часть которой задается уравнением в форме Вейерштрасса $y^2 = 4x^3$ g_2x-g_3 . Мы будем оперировать с корнями e_1,e_2,e_3 полинома $4x^3-g_2x-g_3$ вместо самих коэффициентов g_2, g_3 .

Пусть $\Gamma' \subset \Gamma$ – подгруппа индекса 2 и пусть ω – такое комплексное число, что $\omega \in \Gamma' \setminus 2\Gamma$. Тогда $\Gamma' = Span(2\Gamma \cup \{\omega\})$.

Пусть теперь $\Gamma^{(n)} = Span(2^n\Gamma \cup \{\omega\})$. $\wp^{(n)}(z), \zeta^{(n)}(z), \sigma^{(n)}(z)$ - функции Вейерштрасса, соответствующие решеткам $\Gamma^{(n)}$. $e_1^{(n)}, e_2^{(n)}, e_3^{(n)}$ - корни, соответствующие решеткам $\Gamma^{(n)}$. Обозначим также $\Gamma^{(\infty)} = Span(\{\omega\})$ и $\wp^{(\infty)}(z), \zeta^{(\infty)}(z), \sigma^{(\infty)}(z), e_1^{(\infty)}, e_2^{(\infty)}, e_3^{(\infty)}$ – данные, соответствующие данной

Функции Вейерштрасса, а также корни решетки Г выражаются через корни функции Вейерштрасса решетки Γ^{n+1} . То есть $(\wp(z),\zeta(z),\sigma(z))=$ $F^{(n)}(\wp^{(n)}(z),\zeta^{(n)}(z),\sigma^{(n)}(z))$. Рассмотрим последовательность $(\wp_n(z),\zeta_n(z),\sigma_n(z))=$ $F^{(n)}(\wp^{(\infty)}(z),\zeta^{(\infty)}(z),\sigma^{(\infty)}(z))$. Она сходится квадратично быстро к $(\wp(z),\zeta(z),\sigma(z))$. В этом заключается основной результат работы и суть метода.

Благодаря данному методу можно вычислять квадратично быстро функции Вейерштрасса, периоды решеток через корни полинома, а также отображение Абеля.

1 Литература

- 1. Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1987.
- 2. Ахиезер Н.И. Элементы теории эллиптических функций. М.: Наука, 1970.
 - 3. Chandrasekharan K. Elliptic functions. Berlin: Springer-Verlag, 1985.