Математическое моделирование динамики экосистемы «хищник – две жертвы»

Се Лэ

Студентка, 4 курс бакалавриата
Факультет ВМК МГУ-ППИ, Шэньчэкэнь, КНР
E-mail: xxxielelele@gmail.com

Научный руководитель — Семендяева Наталья Леонидовна

Одной из самых популярных математических моделей биологии является модель Лотки-Вольтерры «хищник-жертва» [1-2]. Модель была предложена американским математиком Альфредом Лоткой и итальянским математиком Вито Вольтеррой в начале XX века при изучении двух биологических популяций — хищных и обычных рыб — в связи с попыткой объяснить колебания улова рыбы в Адриатическом море. Модель представляет собой систему двух нелинейных обыкновенных дифференциальных уравнений:

$$\begin{cases}
\frac{dx}{dt} = 4k_1x - 4k_2xy \\
\frac{dy}{dt} = 4k_2xy - k_3y
\end{cases}$$
(1)

Здесь t — время; x, y — численность жертв и хищников, соответственно; k_1, k_2, k_3 — скорости рождения и гибели жертв и хищников. Для системы (1) ставится задача Коши с начальными условиями $x(0)=x_0, y(0)=y_0$.

Фазовый портрет системы (1) изображён на рисунке 1. Система имеет две точки покоя при всех допустимых значениях параметров. Одна точка покоя находится в начале координат и имеет тип седла. Вторая точка покоя имеет характер центра. Замкнутые траектории в окрестности этой точки описываются первым интегралом системы:

$$x^{k_3}y^{4k_1}e^{-4k_2(x+y)} = C_0, (2)$$

где $C_0 = x_0^{k_3} y_0^{4k_1} e^{-4k_2(x_0+y_0)}$.

Одним из существенных недостатков модели Лотки-Вольтерры (1) является нарушение закона сохранения массы: в отсутствии хищников численность популяции жертв неограниченно возрастает. В данной работе построена и изучена более сложная модель «хищник - 2 жертвы», которая лишена указанного недостатка. Рассматриваются жертвы двух видов; предполагается, что прирост численности жертв пропорционален не только их концентрации, но и концентра-

ции пищевых ресурсов:

$$\frac{dx_1}{dt} = 4k_1x(1 - x_1 - x_2 - y) - 4k_3x_1y,\tag{3}$$

$$\frac{dx_2}{dt} = 4k_2x_2(1 - x_1 - x_2 - y) - 4k_4x_2y; \tag{4}$$

$$\frac{dy}{dt} = 4k_3x_1y + 4k_4x_2y - k_5y. (5)$$

Задача рассматривается на трёхмерном симплексе

$$\Omega = \{x_1, x_2, y \ge 0; x_1 + x_2 + y \le 1\}.$$
(6)

Система (3)-(5) имеет нетривиальный фазовый портрет. Наряду с изолированной точкой покоя в начале координат, существующей при любых допустимых значениях параметров модели и имеющей характер седла, система имеет неизолированные точки покоя с координатами $(x_1;1-x_1;0)$, заполняющие одно из рёбер трёхмерного симплекса Ω . На гранях Ω могут существовать изолированные точки покоя типа седлофокус. Внутри симплекса точек покоя нет.

Периодические решения у системы (3)-(5) не обнаружены. Следовательнл, для описания колебаний численности биологических популяций, наблюдаемых в природе, необходимо использовать более сложные математические модели, например, дифференциальные уравнения с парными вероятностями, уравнения в частных производных или стохастические модели, использующие метод Монте-Карло.

Иллюстрации

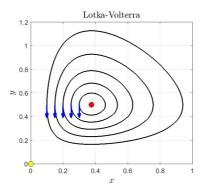


Рис. 1. Фазовый портрет системы (1) с отмеченными точками покоя. Значения параметров: $k_1=1,\ k_2=2,\ k_3=3.$ Тонкие линии – траектории системы для разных начальных данных, стрелки указывают направление движения.

Литература

- 1. A. J. Lotka. Analytical note on certain rhythmic relations in organic systems // Proc. Natl. Acad. Sci. U.S., 1920, V. 6, P. 410.
- 2. Volterra V. Le, ñons sur la theori mathematique de la lutte pour la vie, Paris: Gauthier-Villars, 1931.