Хондрогенный потенциал дермальных фибробластов человека и МСК костного мозга кролика при различных вариантах белковой модификации

Научный руководитель – Божокин Михаил Сергеевич

Рахимов Б.Р. 1 , Марченко Д.М. 2 , Божокин М.С. 3

1 - Санкт-Петербургский государственный технологический институт (технический университет), Санкт-Петербург, Россия, *E-mail: rah.bulat7@yandex.ru*; 2 - Институт цитологии РАН, Saint Petersburg, Россия, *E-mail: berbimot@yandex.ru*; 3 - Институт цитологии РАН, Saint Petersburg, Россия, *E-mail: writeback@mail.ru*

Гиалиновый хрящ (ГХ) — соединительная ткань, покрывающая поверхность крупных суставов и обладающая ограниченным потенциалом к регенерации [1]. На сегодняшний день более 7% мирового населения страдает от остеоартрита (ОА) [2]. При патогенезе ОА происходит постепенная деградация суставного хряща, способная привести к потере функциональности сустава и к необходимости проведения высокоинвазивной процедуры эндопротезирования [4]. Одним из перспективных направлений восстановления гиалинового слоя суставов является использование методов тканевой инженерии, основанных на применении клеточно-инженерных конструкций, включающих биодеградируемый скаффолд и предварительно модифицированные клетки [3].

В данной работе было проведено сравнительное скрининговое исследование хондрогенного потенциала дермальных фибробластов человека и МСК костного мозга кролика при различных вариантах белковой модификации. Модификация клеточных культур осуществлялась с помощью сред для хондрогенной дифференцировки, приготовленных по двум различным методикам: 1) среда на основе белка TGF-β3; 2) среда дифференцировки StemPro™ Chondrogenesis Differentiation Kit. Клетки культивировались в 48 луночных планшетах в 12 повторностях с анализом на 7, 14, 21 сутки. На заключительном этапе проводилась РВ-ПЦР, позволяющая оценить относительное изменение экспрессии генов, ответственных за хондрогенез (*Tgf-β3, Acan, Col2α1, Comp*)

Было обнаружено, что обе среды влияют на хондрогенную дифференцировку как МСК кролика, так и дермальных фибробластов человека, при этом коммерческая среда была более эффективной. Модификация клеток возможна, что подтверждается относительным увеличением экспрессии целевых генов. Требуются дальнейшие исследования, направленные на измерение абсолютного количества определённых белков.

Источники и литература

- 1) 1. Rocky Tuan. Cartilage regeneration / Rocky S. Tuan , Antonia F. Chen, Brian A. Klatt // J Am Acad Orthop Surg. –2013. eg–V. 21(5). –P. 303-311. 10.5435/JAAOS-21-05-303.
- 2) 2. Saeid Safiri. Global, regional and national burden of osteoarthritis 1990-2017: a systematic analysis of the Global Burden of Disease Study 2017 / Safiri, S. et al. Ann Rheum Dis. 2020. –V. 79(6). –P. 819-828. 10.1136/annrheumdis-2019-216515
- 3) 3. Yaima Campos. Tissue Engineering: An Alternative to Repair Cartilage / Campos Y. et al. Tissue Eng Part B Rev. -2019. -V. 25(4). -P. 357-373. 10.1089/ten.TEB.2018.0330
- 4) 4. Yamini Krishnan. Cartilage diseases / Krishnan Y., Grodzinsky AJ. // Matrix Biol. eq-2018. eq-V. 71-72. -P. 51-69. 10.1016/j.matbio.2018.05.005