Анализ референсных генов для нормализации данных количественной ОТ-ПЦР в раковых клетках с подавленной активностью киназы mTOR

Научный руководитель – Суворова Ирина Игоревна

Исхакова Элина Руслановна

Студент (бакалавр)

Санкт-Петербургский государственный университет, Биологический факультет, Saint Petersburg, Россия

E-mail: 1808elina@gmail.com

Введение

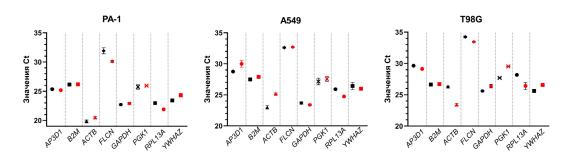
Подавление киназы mTOR оказывает противоопухолевый эффект, поэтому актуален поиск её эффективных ингибиторов [5]. Но ингибирование mTOR меняет уровень экспрессии мРНК, что нужно учитывать при выборе референсного гена для нормализации данных количественной ПЦР, ведь не найдено универсальных [4].

Результаты исследования

Для оценки экспрессии генов мы использовали 3 линии раковых клеток с различным патогенезом: T98G (глиобластома), A549 (аденокарцинома легкого) и PA-1 (тератокарцинома яичника). Были отобраны 8 генов домашнего хозяйства: ap3d1, b2m, actb, flcn, gapdh, rpl13a, ywhaz. Гены gapdh и actb были взяты как популярные референсы, а остальные - из-за вовлеченности в базисные функции клеток [2, 6]. Клетки были обработаны AZD8055, ингибитором ATФазной активности mTOR [3].

Для анализа средних значений порога цикла (Ct) (рис. 1) были применены статистические алгоритмы NormFinder, geNorm, RefFinder и расчет коэффициента вариации, результаты представлены в виде рейтинга стабильности экспрессии (рис. 2). Программа geNorm осуществляет подсчет средней парной вариации между генами [7]. NormFinder сравнивает внутригрупповые и межгрупповые различия образцов и выдает "значение стабильности" (SV) [1]. RefFinder суммирует результаты этих алгоритмов.

Выводы


Ген b2m был определен как оптимальный референсный ген для анализа ПЦР в раковых клетках с подавленной киназой mTOR, демонстрируя наибольшую стабильность экспрессии по сравнению с actb и gapdh.

Источники и литература

- 1) Andersen C.L., Jensen J.L., Ørntoft T.F. Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets // Cancer Res. 2004. Vol. 64, № 15. P. 5245–5250.
- 2) Barber R.D. et al. GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues // Physiol Genomics. American Physiological Society, 2005. Vol. 21, № 3. P. 389–395.
- 3) Chresta C.M. et al. AZD8055 Is a Potent, Selective, and Orally Bioavailable ATP-Competitive Mammalian Target of Rapamycin Kinase Inhibitor with In vitro and In vivo Antitumor Activity // Cancer Res. 2010. Vol. 70, № 1. P. 288–298.
- 4) Curis E. et al. Selecting reference genes in RT-qPCR based on equivalence tests: a network based approach // Sci Rep. 2019. Vol. 9, № 1. P. 16231.

- 5) Liu Y. et al. mTOR inhibition attenuates chemosensitivity through the induction of chemotherapy resistant persisters // Nat Commun. 2022. Vol. 13, № 1. P. 7047.
- 6) Selvey S. et al. β -Actin—an unsuitable internal control for RT-PCR // Mol Cell Probes. 2001. Vol. 15, Nº 5. P. 307–311.
- 7) Vandesompele J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes // Genome Biol. 2002. Vol. 3, № 7. P. research0034.1.

Иллюстрации

Ген		PA-1		A549	T98G		
	контроль	обработанные	контроль	обработанные	контроль	обработанные	
AP3D1	25,36±0,13	25,18±0,09	28,75±0,10	29,99±0,52	29,64±0,07	29,14±0,07	
B2M	26,16±0,20	26,19±0,10	27,48±0,08	27,91±0,09	26,64±0,11	26,71±0,13	
ACTB	19,88±0,18	20,53±0,12	22,99±0,28	25,19±0,12	26,33±0,07	23,45±0,15	
FLCN	31,92±0,51	30,11±0,21	32,61±0,12	32,69±0,11	34,24±0,14	33,46±0,11	
GAPDH	22,71±0,14	22,92±0,16	23,69±0,19	23,40±0,12	25,60±0,06	25,39±0,28	
PGK1	25,73±0,40	25,95±0,06	27,15±0,53	27,58±0,43	27,69±0,02	29,53±0,06	
RPL13A	22,98±0,27	21,90±0,10	25,91±0,09	24,74±0,03	28,18±0,08	26,42±0,56	
YWHAZ	23,43±0,03	24,31±0,29	26,43±0,58	25,98±0,11	25,62±0,09	26,58±0,11	

Рис.: 1

					PA-1					
		geNorn	,	NormFinder		CV		RefFinder		Среднее
Рейтинг	Ген	Значение М	Ранг	sv	Ранг	CV, %	Ранг	sv	Ранг	геометрическое значение рангов
1	B2M	0,541	1	0,038	3	16,50	2	1,41	1	1,57
2	GAPDH	0,541	2	0,004	1	17,23	3	4,00	4	2,21
3	AP3D1	0,585	4	0,049	4	13,45	1	2,28	3	2,63
4	PGK1	0,545	3	0,032	2	33,77	4	2,00	2	2,63
5	YWHAZ	0,816	5	0,365	5	33,82	5	7,11	7	5,44
6	RPL13A	0,950	7	0,401	7	41,03	6	5,23	5	6,19
7	ACTB	0,866	6	0,390	6	55,77	7	7,24	8	6,70
8	FLCN	1,403	8	0,558	8	64,39	8	6,24	6	7,44
					A549					
Рейтинг	Ген	geNorm		NormFinder		CV		RefFinder		Среднее
		Значение М	Ранг	sv	Ранг	CV, %	Ранг	sv	Ранг	геометрическое значение рангов
1	B2M	0,579	1	0,001	1	18,29	2	1,00	1	1,19
2	FLCN	0,579	3	0,070	3	12,34	1	2,00	2	2,06
3	PGK1	0,579	2	0,001	2	49,23	5	4,00	4	2,99
4	GAPDH	0,659	4	0,248	4	19,09	3	2,28	3	3,46
5	YWHAZ	0,719	5	0,319	5	34,94	4	5,00	5	4,73
6	AP3D1	0,983	7	0,371	6	49,96	6	7,00	7	6,48
7	RPL13A	0,794	6	0,372	7	71,09	7	6,00	6	6,48
8	ACTB	1,438	8	0,502	8	78,11	8	8,00	8	8,00
					T98G					
	Ген	geNorm		NormFinder		CV		RefFinder		Среднее
Рейтинг		Значение М	Ранг	sv	Ранг	CV, %	Ранг	sv	Ранг	геометрическое значение рангов
1	B2M	1,02	1	0,090	2	13,81	1	1,68	1	1,19
2	AP3D1	1,02	2	0,074	1	20,43	2	2,11	2	1,68
3	FLCN	1,11	3	0,279	3	31,30	3	3,83	5	3,41
4	YWHAZ	1,20	4	0,368	4	36,48	4	3,46	3	3,72
5	GAPDH	1,58	7	0,584	7	57,84	5	3,66	4	5,60
6	PGK1	1,55	6	0,572	6	61,58	6	4,14	6	6,00
7	RPL13A	1,32	5	0,447	5	90,03	8	5,92	7	6,12
8	ACTB	2,24	8	0,672	8	85,68	7	8,00	8	7,74

Рис. : 2