ТОПОЛОГИЧЕСКАЯ КЛАССИФИКАЦИЯ СОФОКУСНЫХ ГЕОДЕЗИЧЕСКИХ БИЛЛИАРДОВ НА ПАРАБОЛОИДАХ

Научный руководитель – Фоменко Анатолий Тимофеевич

Маланкин Андрей Павлович

Студент (специалист)

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра теоретической механики и мехатроники, Москва, Россия

E-mail: malankin555@mail.ru

В настоящее время активно изучаются интегрируемые биллиарды и их обобщения. Слоения Лиуивлля плоских биллиардов, ограниченных дугами софокусных квадрик, исследовались в работах В. Драговича, М. Раднович [1] и В. В. Ведюшкиной (Фокичевой) [2], [3]. Отметим что, В. В. Ведюшкина ввела и рассмотрела новый класс интегрируемых биллиардов: биллиарды на столах-комплексах, склееных из плоских биллиардных столов. Как оказалось, такие биллиарды моделируют слоения Лиувилля многих важных интегрируемых гамильтоновых систем (см. [4]).

Настоящая работа посвящена интегрируемым геодезическим биллиардам на параболоидах. Софокусные геодезические биллиарды на эллипсоиде и гиперболоидах изучались Г. В. Белозеровым в работе [5].

Напомним, что cemeйcmeom coфокусных napaболоидов в \mathbb{R}^3 называется однопараметрическое семейство квадрик, заданное уравнением

$$\frac{x^2}{4(a-\lambda)} + \frac{y^2}{4(b-\lambda)} = z - \lambda,$$

где a > b > 0 — фиксированные числа, а λ — вещественный параметр.

Определение 1. Биллиардным столом на параболоиде назовем замкнутую область, ограниченную конечным числом квадрик, софокусных с данной, и имеющую углы излома на границе равные $\frac{\pi}{2}$.

Мы будем рассматривать следующую динамическую систему: материальная точка движется по биллиардному столу вдоль геодезических с постоянной по модулю скоростью, отражаясь от границы абсолютно упруго. Такой биллиард является интегрируемым по Лиувиллю в кусочно-гладком смысле. Его интегрируемость следует из знаменитой теоремы Якоби-Шаля.

Следуя В. В. Ведюшкиной, на множестве биллиардных столов (на фиксированной квадрике) введем следующее отношение эквивалентности.

Определение 2. Будем говорить, что два биллиардных стола комбинаторно эквивалентны, если один из них может быть получен из другого последовательностью следующих преобразований:

- изменением сегмента границы путем непрерывной деформации в классе софокусных квадрик, при этом значение изменяемого параметра λ при каждой деформации не может принимать значений а u b;
- симметрией относительно координатных плоскостей.

Автором получена полная классификация биллиардных столов на параболоидах относительно комбинаторной эквивалентности.

Теорема 1. На эллиптическом параболоиде существует в точности 13 типов комбинаторно неэквивалентных биллиардных столов, а на гиперболическом параболоиде — ровно 9.

Оказывается верным следующее утверждение.

Утверждение 1. Биллиарды на комбинаторно эквивалентных столах грубо лиувиллево эквивалентны.

С помощью этого утверждения были найдены инваранты Фоменко-Цишанга биллиардов на всевозможных параболических биллиардных столах.

Источники и литература

- 1) V. Dragovich, M. Radnovich Bifurcations of Liouville tori in elliptical billiards // Regul. Chaotic Dyn., 2009, T. 14, N_2 4–5 C. 479–494.
- 2) В.В. Фокичева Описание особенностей системы бильярда в областях, ограниченных софокусными эллипсами или гиперболами // Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2014, № 4, С. 18–27.
- 3) В.В. Фокичева Классификация биллиардных движений в областях, ограниченных софокусными параболами // Матем. сб., 2014, Т. 205, № 8, С. 139–160.
- 4) В.В. Ведюшкина, А.Т. Фоменко, И.С. Харчева Моделирование невырожденных бифуркаций замыканий решений интегрируемых систем с двумя степенями свободы интегрируемыми топологическими биллиардами // Докл. РАН, 2018, Т. 479, № 6, С. 607–610.
- 5) Г.В. Белозеров Топологическая классификация интегрируемых геодезических биллиардов на квадриках в трехмерном евклидовом пространстве // Матем. сб., 2020, Т. 211, № 11, С. 3–40.