Исследование процесса очистки сельскохозяйственных сточных вод от сульфаметоксазола микроводорослями Chlorella sorokiniana

Научный руководитель – Дворецкий Дмитрий Станиславович

Темнов М.С.¹, Меронюк К.И.², Свиридова А.Е.³, Устинская Я.В.⁴, Брянкина А.К.⁵
1 - Тамбовский государственный технический университет, Тамбовская область, Россия, E-mail: temnov.mihail@mail.ru; 2 - Тамбовский государственный технический университет, Тамбовская область, Россия, E-mail: kmeronyuk@yandex.ru; 3 - Тамбовский государственный технический университет, Тамбовская область, Россия, E-mail: alisasviridova18@gmail.com; 4 - Российский химико-технологический университет имени Д.И. Менделеева, Москва, Россия, E-mail: ustinskaya.yana@yandex.ru; 5 - Тамбовский государственный технический университет, Тамбовская область, Россия, E-mail: alex.tambov.ru@mail.ru

Целью работы было исследование процесса очистки сельскохозяйственных сточных вод от сульфаметоксазола – антибактериального лекарственного средства группы сульфаниламидов – микроводорослями *Chlorella sorokiniana* Shihira & R.W.Krauss.

Культивирование штамма микроводорослей C. sorokiniana IPPAS C-1 осуществляли в фотобиореакторе $(2\ \pi)$ при аэрации газовоздушной смесью с концентрацией углекислого газа 0.06% (расход $1.5\pm0.25\ \pi/{\rm muh}$) на модельных сельскохозяйственных сточных водах (табл.) в течение 9 сут при температуре $30\ ^{\circ}{\rm C}$ и уровне фотосинтетически активной радиации (ФАР) $135\ {\rm mkmonb}\ {\rm фотоноb}/{\rm (m^2 \cdot c)}$. Посевной материал микроводорослей вносили в объеме 10% — он представлял собой суспензию, взятую на экспоненциальной фазе роста с концентрацией клеток $57\ {\rm mnh}\ {\rm kn}/{\rm mn}$. В качестве контрольного образца осуществляли культивирование микроводорослей C. sorokiniana IPPAS C-1 при тех же условиях, но без добавления в состав модельных сточных вод, используемых в качестве питательной среды, антибиотика сульфаметоксазола. Подсчет клеток в экспериментальном и контрольном образцах осуществляли каждые сутки методом прямого подсчета в камере Горяева. Измерение концентрации сульфаметоксазола в культуральной жидкости в экспериментальном образце осуществляли на 0,4,6 и 9 сут с применением метода газовой хроматографии [1]. Эксперимент был повторен три раза.

По результатам проведенного исследования было определено, что за 9 сут культивирования концентрация антибиотика в модельных сточных водах снижается на 94% до концентрации 0,63 мкг/л. Наличие сульфаметоксазола в составе питательной среды приводит к статистически значимому различию в концентрации клеток уже на 4 сут. Антибиотик выступает в качестве стимулятора роста. На 8–9 сут культивирования концентрация клеток микроводорослей, выращенных на питательной среде с антибиотиком, составляет 12–14 млн кл/мл, что выше на 11–40% по сравнению с контрольным образцом.

На основе полученных данных можно сделать вывод о том, что применение микроводорослей в качестве биологического агента для очистки сельскохозяйственных стоков от антибиотических соединений является перспективным вариантом модернизации существующих систем очистки сточных вод, учитывающим современные вызовы, стоящие перед человеческим обществом.

Источники и литература

1) Принципы и методы биохимии и молекулярной биологии / под редакцией К. Уилсона, Дж. Уолкера; перевод с английского Т.П. Мосоловой, Е.Ю. Бозелек-Решетняк. 3-е изд. Москва: Лаборатория знаний, 2020. С. 855.

Иллюстрации

pH	5,0
Аммиачный азот, мг/л	60
Нитраты, мг/л	206
Фосфаты, мг/л	30
Общая микробная численность (ОМЧ), КОЕ / 1 мл	1.106-1,5.106
Цветность по платинокобальтовой шкале	20-60
Сульфаметоксазол, мкг/л	10

Рис. : Таблица. Состав модельных сельскохозяйственных сточных вод.