Секция «Вычислительная математика, математическое моделирование и численные методы»

Численное решение задач с тонким препятствием для оператора Лапласа в двумерной области

Научный руководитель – Апушкинская Дарья Евгеньевна

Борунов Семён Сергеевич

Студент (бакалавр)

Российский университет дружбы народов, Факультет физико-математических и естественных наук, Москва, Россия

E-mail: semborunov@yandex.ru

Рассмотрена задача с тонким препятствием Для оператора Лапласа в квадратной области. Такая задача возникает, например, в финансовой математике [2] или при моделировании мембраны, натягиваемой на тонкий объект. В работе получено численное решение и верифицированы апостериорные оценки отклонения приближенного решения от точного. Пусть $\Omega \in \mathbb{R}^n$ — открытое, связное, ограниченное множество, с липшицевой границей $\partial \Omega$. М —гладкое (n-1)-мерное многообразие, которое делит Ω на две липшицевы подобласти $\Omega_+,\ \Omega_-$. Функция $\psi: \mathbf{M} \to \mathbb{R}$ — препятствие, $\varphi: \partial \Omega \to \mathbb{R}$ такая что $\varphi \geq \psi$ на $\mathbf{M} \cap \partial \Omega$ — условия на границе. Функция ψ гладкая, $\varphi \in H^{1/2}(\partial \Omega)$. Задачей с тонким препятствием для оператора Лапласа называется задача минимизации функционала

$$J(v) = \frac{1}{2} \int_{\Omega} |\nabla v|^2 dx$$

на множестве $K=\{v\in H^1(\Omega):v\geq\psi$ на $\mathbf{M},v=\varphi$ на $\partial\Omega\}$. Известно, что для такой задачи существует единственное решение [4] Мы будем рассматривать $\Omega=[0,a]\times[0,a],\,\psi\equiv0,$ $\mathbf{M}=\{(x_1,x_2):x_1=x_2\}$. Задача решается численно на регулярной сетке методом аффинной аппроксимации и координатной релаксации. Вокруг каждой внутренней точки сетки $-v_{ij}$, выбираются 6 прилежащих треугольников (см. рис.), в них строится аффинное приближение функции v и вычисляется J(v). Эта же операция производится для $v_{ij}\pm h$. Новое значение в узле ij будет одно из набора $\{v_{ij},\,v_{ij}+h,\,v_{ij}-h\}$, доставившее наименьшее значение функционалу J(v). В работе [1] были доказаны две оценки, которые выполняются $\forall v\in K$:

$$\|\nabla(u-v)\|_{\Omega} \leq \|\nabla v - q^*\|_{\Omega} + \sqrt{2} \int_{\mathbf{M}} \lambda(v-\psi) d\mu + C_{F_+} \|\operatorname{div} q^*\|_{\Omega_+} + C_{F_-} \|\operatorname{div} q^*\|_{\Omega_-} + C_{Tr_{\mathbf{M}}} \|\lambda - [q^* \cdot n]\|_{\mathbf{M}},$$
(1)

$$\|\nabla(u-v)\|_{\Omega}^{2} \leq (1+\beta_{1})\|\nabla v - q^{*}\|_{\Omega}^{2} + (1+\beta_{1}^{-1})(1+\beta_{2})\left[C_{F_{+}}\|\operatorname{div}q^{*}\|_{\Omega_{+}} + C_{F_{-}}\|\operatorname{div}q^{*}\|_{\Omega_{-}}\right]^{2} + (1+\beta_{1}^{-1})(1+\beta_{2}^{-1})C_{Tr_{\mathbf{M}}}^{2}\|\lambda - [q^{*} \cdot n]\|_{\mathbf{M}}^{2} + 2\int_{\mathbf{M}} \lambda(v-\psi)d\mu,$$

$$(2)$$

где $C_{F_{\pm}}$ — константы Фридрихса для Ω_{\pm} , $C_{Tr_{\mathbf{M}}}$ — следовая константа, $q^* \in H(\Omega_{\pm}, \mathrm{div})$, $\lambda \in \Lambda$, $\beta_1, \beta_2 \geq 0$.

$$H(\Omega_{\pm},\operatorname{div})=\{q^*\in L_2(\Omega,\mathbb{R}^n):\operatorname{div}q^*\in L_2(\Omega_{\pm}), [q^*\cdot\mathbf{n}]\in L_2(\mathbf{M})\},$$
 $\Lambda=\{\lambda\in L_2(\mathbf{M}),\lambda(x)\geq 0$ п.в. на $\mathbf{M}\}.$

Оценка (2) допускает оптимизацию по q^* . Алгоритм оптимизации схож с алгоритмом поиска решения, но теперь ищется минимум правой части (2). В таблице предоставлены расстояния от точного до численных решений, которые строились на адаптивной сетке, и значения мажоранты (1). За $\mathfrak{M}(\nabla w)$ обозначена правая часть (1) при $q^* = \nabla w$, $\lambda = [\nabla w \cdot \mathbf{n}]$, $G(\nabla w)$ — оператор регуляризации.

n points	$\ \nabla(u-v)\ _{\Omega}$	$\mathfrak{M}(\nabla u)$	$\mathfrak{M}(\nabla v)$	$\mathfrak{M}(G(\nabla v))$
49	0.023286	0.179052	0.869867	0.512364
97	0.025963	0.136945	1.130810	0.695407
193	0.027816	0.106575	1.607528	1.035288
385	0.028852	0.084644	2.294173	1.544271

Источники и литература

- 1) D.E. Apushkinskaya, S.I. Repin, Thin obstacle problem: Estimates of the distance to the exact solution. // Interfaces and Free Boundaries 20 (2018)
- 2) Cont, R., Tankov, P., Financial Modelling with Jump Processes. Chapman and Hall/CRC Financial Mathematics Series. Chapman and Hall/CRC, Boca Raton, FL, 2004. Zbl1052.91043 MR2042661
- 3) R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer, New York, 1984.
- 4) Lions, J.-L., Stampacchia, G. Variational inequalities. Comm. Pure Appl. Math. 20 (1967), 493–519. Zbl0152.34601 MR0216344

Иллюстрации

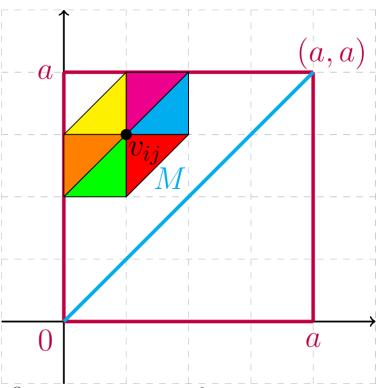


Рис. : Оптимизируемая точка и 6 прилежащих треугольников