Секция «Дифференциальные уравнения, динамические системы и оптимальное управление»

О колеблемости решений одного дифференциального уравнения нейтрального типа

Научный руководитель – Асташова Ирина Викторовна

Башуров Вячеслав Вадимович

Выпускник (специалист)

Московский государственный университет имени М.В.Ломоносова, Механико-математический факультет, Кафедра дифференциальных уравнений, Москва, Россия

E-mail: woonniethepih@yahoo.com

Рассмотрим дифференциальное уравнение второго порядка нейтрального типа с постоянными запаздываниями

$$(y(t) - py(t - \tau))'' + q(t)f(y(t - \sigma)) = 0, \quad t \in [t_0, +\infty),$$
(1)

где $0 0, q \in C[t_0, +\infty), q \ge 0.$

Определение 1. Решением уравнения (1) будем называть удовлетворяющую ему функцию $y \in C[t_0 - \rho, +\infty), \ \rho \equiv \max\{\tau, \sigma\}, \$ при условии $y(\cdot) - py(\cdot - \tau) \in C^2[t_0, +\infty).$

Определение 2. Решение y уравнения (1) называется колеблющимся, если для любого $t_1 \geqslant t_0$ существует такое $t_2 > t_1$, что $y(t_2) = 0$..

Определение 3. Скажем, что функция f, для которой $f'(y) \ge 0$, $y \in \mathbb{R}$, и yf(y) > 0, $y \ne 0$, удовлетворяет условию:

— $cynep_{\Lambda}uheйhocmu$, если при любом $\varepsilon>0$ верны оценки

$$0 < \int_{\varepsilon}^{+\infty} \frac{dy}{f(y)} < +\infty, \quad 0 < -\int_{-\infty}^{-\varepsilon} \frac{dy}{f(y)} < +\infty;$$

— cyблинейности, если при любом $\varepsilon > 0$ верны оценки

$$0 < \int_0^{\varepsilon} \frac{dy}{f(y)} < +\infty, \quad 0 < -\int_{-\varepsilon}^0 \frac{dy}{f(y)} < +\infty.$$

В случае, когда $p=\tau=\sigma=0$ и фукнция $f(y)=|y|^{\gamma}{
m sgn}y$, уравнение (1) является уравнением типа Эмдена-Фаулера

$$y'' + q(t)|y|^{\gamma}\operatorname{sgn} y = 0. \tag{4}$$

Известны следующие критерии колеблемости всех его решений.

Теорема Аткинсона. [1] *Если* $q \in C[0,+\infty)$, $q \geqslant 0$ $u \gamma = 2n-1$, $n \in \mathbb{N}$, n > 1, то все решения уравнения (2) являются колеблющимися тогда и только тогда, когда $\int_0^{+\infty} tq(t) dt = +\infty$.

Теорема Белогорца. [2] Если $q_j \in C[0, +\infty)$, $q_j \geqslant 0$ и $\gamma_j = p_j/r_j \in (0, 1)$, где $p_j, r_j -$ натуральны, нечётны и $j \in \mathbb{N}$, то все решения уравнения $y'' + \sum_{j=1}^n q_j(t) y^{\gamma_j} = 0$ являются колеблющимися тогда и только тогда, когда $\int_0^{+\infty} \sum_{j=1}^n t^{\gamma_j} q_j(t) dt = +\infty$.

В [3] доказаны критерии колеблемости всех решений уравнения (1) в случаях суперлинейности и сублинейности функции f. Ниже представлены результаты, дополняющие и уточняющие эти критерии.

Теорема 1. Пусть функция $f \in C^1(\mathbb{R})$ суперлинейна. Тогда:

- 1) если $\int_0^{+\infty} tq(t) dt = +\infty$, то любое решение уравнения (1) либо является колеблющимся, либо стремится к нулю на бесконечности;
 - 2) если все решения уравнения (1) колеблющиеся, то $\int_0^{+\infty} tq(t)\,dt = +\infty$.

Замечание. Расходимость интеграла $\int_0^{+\infty} tq(t)\,dt$ не гарантирует (вопреки утверждению из [3]) колеблемости всех решений уравнения (1). Например, функция $y(t)=e^{-t}$ является частным решением уравнения

$$(y(t) - y(t-1)/2)'' + (e/2 - 1)e^{2t-3}y^3(t-1) = 0,$$

причем $\lim_{t\to +\infty} y(t)=0$ и $\int_0^{+\infty} tq(t)\,dt=+\infty$, где $q(t)\equiv t(e/2-1)e^{2t-3}$. **Теорема 2.** Пусть функция $f\in C(\mathbb{R})$ сублинейна и $f(uv)\geqslant f(u)f(v)$ при $uv\geqslant 0$. Тогда:

- 1) если $\int_0^{+\infty} f(t)q(t)\,dt = +\infty$, то любое решение уравнения (1) либо является колеблющимся, либо стремится к нулю на бесконечности;
 - 2) если все решения уравнения (1) колеблющиеся, то $\int_0^{+\infty} f(t)q(t)\,dt = +\infty$.

Теорема 3. Если функция $f \in C(\mathbb{R})$ сублинейна, $\sigma > \tau$ и $\int_0^{+\infty} q(t) dt = +\infty$, то все решения уравнения (1) являются колеблющимися.