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Painlevé Analysis and exact solution to the traveling
wave reduction of nonlinear differential equations for
describing pulse in optical fiber . . . . . . . . . . . . . 63

Kulikov, A. N., Kulikov, D. A.
Spatially inhomogeneous equilibrium states of the Cahn-
Hilliard equation . . . . . . . . . . . . . . . . . . . . . 66

Kulikov, V. A.
Analysis of bifurcations of spatially inhomogeneous so-
lutions of a nonlinear parabolic equation with the op-
erator of rotation of the spatial argument and delay . . 68

Lychagin, V. V., Rubtsov, V. N.
Topological invariants of MongeAmpre Grassmannians 70

Marushkina, E. A.
Bifurcation scenario in the amplitude system of two
coupled oscillators . . . . . . . . . . . . . . . . . . . . . 71

Mikhailov, A. V.
Quantisation ideals of nonabelian integrable systems . . 74

Millionshchikov, D. V.
The growth of polynomial Lie-Reinhart algebras . . . . 75

Morozov, K. E.
Degenerate resonances in the quasi-periodically forced
Duffing equation with the asymmetry of the potential
well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Nefedov, N. N., Nikulin, E. I., Derugina, N. N.
Periodic and stationary solutions of nonlinear reaction-
diffusion problems with singularly perturbed boundary
conditions . . . . . . . . . . . . . . . . . . . . . . . . . 78

Nefedov, N. N., Volkov, V. T.
Asymptotic solution of coefficient inverse problems for
interior layer burgers type equations with modular non-
linearity . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Nesterov, P. N.
On the dynamics of certain higher-order scalar differ-
ence equation . . . . . . . . . . . . . . . . . . . . . . . 82

8



CONTENTSCONTENTS

Papamikos, G.
On a hierarchy of multi-component generalisation of
MKDV type equations . . . . . . . . . . . . . . . . . . 84

Pavlov, M. V.
A new class of integrable two-component systems of
hydrodynamic type . . . . . . . . . . . . . . . . . . . . 84

Plyshevskaya, S. P.
Local dynamics of Cahn–Hilliard equation . . . . . . . 85

Pogrebkov, A. K.
Multiplicative dynamical systems in terms of the in-
duced dynamics . . . . . . . . . . . . . . . . . . . . . . 87

Ramodanov, S. M., Sokolov, S. V.
Dynamics of a cylinder and two point vortices in an
ideal fluid . . . . . . . . . . . . . . . . . . . . . . . . . 88

Rassadin, A. E.
On electric potential of thin round lamella . . . . . . . 89

Rosaev, A. E.
On the limitation of backward integration method in
case of resonance orbits . . . . . . . . . . . . . . . . . . 91

Rossovsky, L. E., Tovsultanov, A. A.
On the Dirichlet problem for an elliptic functional-differential
equation with affine transformation of the argument . . 92

Serow, D. W.
Nonwandering set possessing Wada property . . . . . . 93

Shalom, L.
Non Ordinary Gutkin Billiards . . . . . . . . . . . . . . 94

Sharygin, G. I.
Symmetries of the full symmetric Toda system on real
Lie algebras . . . . . . . . . . . . . . . . . . . . . . . . 95

Sidorenko, V. V.
Retrograde coorbital motion of celestial bodies: the
investigation of qualitative properties using wisdom’s
”Adiabatic approximation” . . . . . . . . . . . . . . . . 96

Skokos, Ch.
Chaotic wave packet propagation in disordered nonlin-
ear lattices with one and two spatial dimensions . . . . 97

Sokolov, S. V., Sakharov, A. V.
Discriminant set of the restricted three-vortex problem
on a plane . . . . . . . . . . . . . . . . . . . . . . . . . 98

9



Conference “Integrable Systems and Nonlinear Dynamics” (ISND-2020)

Sokolov, V. V.
Non-Abelian evolution systems with conservation laws
and symmetries . . . . . . . . . . . . . . . . . . . . . . 99

Talalaev, D. V.
Graph combinatorics, statistical physics and cluster al-
gebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Treschev, D. V.
Entropy of an operator . . . . . . . . . . . . . . . . . . 100

Tsiganov, A.
Rimann-Roch theorem and superintegrable systems . . 100

Van der Weele, M. C., Fokas, A. S.
Integrable Systems in Multidimensions . . . . . . . . . 102

Xenitidis, P.
Symmetries and integrability of difference equations . . 103

Zitelli, M., Mangini, F., Ferraro, M., Niang, A.,
Kharenko, D. S., Wabnitz, S.
Spatiotemporal soliton bullet dynamics in multimode
optical fibers . . . . . . . . . . . . . . . . . . . . . . . . 104

10



Conference “Integrable Systems and Nonlinear Dynamics” (ISND-2020)

ON A HIERARCHY OF MULTI-COMPONENT
GENERALISATION OF MKDV TYPE EQUATIONS

P. Adamopoulou

Heriot-Watt University, Edinburgh, UK
p.m.adamopoulou@gmail.com

In this talk I will discuss the construction of the hierarchy, based on
the Drinfeld-Sokolov scheme, associated to a generalisation of modified
KdV equation. The recursion operator and conserved densities for
the hierarchy will be presented. Finally, I will present the soliton and
breather solution for the whole hierarchy, obtained via the Darboux-
Dressing method.

ESTIMATION OF COMPLETE ELLIPTIC INTEGRAL
OF THE SECOND KIND BY MEANS OF FEATURES OF

THE PASCAL SNAIL

E. S. Alekseeva

Nizhny Novgorod Mathematical Society, Nizhny Novgorod, Russia;
kometarella@mail.ru

Complete elliptic integral of the second kind:

E(k) =

∫ π
2

0

√
1− k2 sin2 ϕdϕ , k ∈ [0, 1] , (1)

has often been arising in different branches of mathematics and its
applications (see [1] and references there in) hence estimation of special
function (1) via elementary functions is very important. To realize this
task the following theorem has been proven.

Theorem. If k ∈ [0, 1] then the next inequality for function (1) is
valid:

E(k) ≥ π

4
√

2

√
k4 + 2 (1 +

√
1− k2)4

1 +
√

1− k2
. (2)

Proof. Let one consider the Pascal snail in polar coordinates:

r = cos θ + b , θ ∈ [0, 2 π], b > 1 . (3)
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Curve (3) bounds the following area:

S =
π (1 + 2 b 2)

2
. (4)

On the other hand length L of curve (3) is expressed via function
(1) as follows:

L = 4 (1 + b) E(k), (5)

where modulus of complete elliptic integral of the second kind is equal
to:

k =
2
√
b

1 + b
. (6)

Substituting expressions (4) and (5) into the well-known isoperi-
metric inequality L2 ≥ 4π S and expressing parameter b of the Pascal
snail in formula (6) via modulus k one obtains inequality (2).

Lower bound (2) for function (1) proves to be much better then
estimations of complete elliptic integral of the second kind obtained
both geometrically in work [1] and analytically in work [2].

This work has been done jointly with A.E. Rassadin.

REFERENCES

1. Alekseeva E. S., Rassadin A. E.,”Estimations of complete elliptic integral of
the second kind by means of geometric methods”, Differentsial’nie Urav-
neniya, 55, No. 6, 894–895 (2019) (in Russian).

2. Alekseeva E. S., ”New Lower Bounds for a Complete Elliptic Integral of the
Second Kind”, Book of abstracts of International Student School-Conference
’Mathematical Spring 2019’ (Russia, Nizhny Novgorod, Higher School of
Economics, May 2-5, 2019), 5–7.
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HOMOCLINIC POINTS IN 2-D AND 4-D
GENERALIZED HENON MAPS

S. Anastassiou1, T. Bountis2, A. Bäcker3

1Department of Mathematics, University of Patras, Greece;
SAnastassiou@gmail.com

2Department of Mathematics, School of Science and Technology,
Nazarbayev University, Kabanbay-batyr, 53, 010000 Astana,

Kazakhstan;
3Technische Universität Dresden, Institut für Theoretische Physik

and Center for Dynamics, 01062 Dresden, and Max-Planck-Institut
für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187

Dresden, Germany

We engage ourselves with the computation of discrete breathers
in coupled 1D Hamiltonian particle chains. To do this, we compute
the homoclinic intersections of invariant manifolds of a saddle point
located at the origin of a class of 2N -dimensional invertible maps.
We apply the parametrization method to express these manifolds an-
alytically, as finite series expansions, and compute their intersections
numerically to high precision. We first carry out this procedure for
a two-dimensional family of generalized Hénon maps, prove the exis-
tence of a hyperbolic set in the non-dissipative case and show that it is
directly connected to the existence of a homoclinic orbit at the origin.
Introducing dissipation we demonstrate that a homoclinic tangency
occurs beyond which the homoclinic intersection disappears. We then
use the same approach to accurately determine the homoclinic inter-
sections of the invariant manifolds of a saddle point at the origin of a
4D map consisting of two coupled 2D cubic Hénon maps. For small
values of the coupling we are able to determine the homoclinic inter-
section, which ceases to exist once a certain amount of dissipation is
present.

REFERENCES

1. Haro À., Canadell M., Figueras J.L., Luque A., Mondelo J. M. The Param-
eterization Method for Invariant Manifolds, Springer, Berlin, (2016).

2. Anastassiou S., Bountis T., Bäcker A. “Homoclinic points in 2–D and 3–D
maps via the parametrization method”, Nonlinearity, 30, 3799-3820 (2017).
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NON-STANDARD LIOUVILLE TORI AND CAUSTICS
IN PROBLEM OF LONG WAVES TRAPPED BY A

SHORE

A. Yu. Anikin1, S. Yu. Dobrokhotov2, V. E. Nazaikinskii3,
A. V. Tsvetkova4

1Ishlisnky Institute for Problems in Mechanics of RAS, Moscow,
Russia; anikin83@inbox.ru

2Ishlisnky Institute for Problems in Mechanics of RAS, Moscow,
Russia; dobr@ipmnet.ru

3Ishlisnky Institute for Problems in Mechanics of RAS, Moscow,
Russia; nazaikinskii@googlemail.com

4Ishlisnky Institute for Problems in Mechanics of RAS, Moscow,
Russia; moskal 1@mail.ru

We study asymptotic eigenfunctions of the two-dimensional wave
operator L̂ = ∇D(x1, x2)∇ in a domain Ω with the coefficient D(x)
degenerating on the boundary ∂Ω. From the physical point of view,
this problem describes standing waves trapped by beaches and islands
in the long wave approximation.

This stationary problem is quite unusual, for instance, compared
with bound states of Schrödinger operator. Indeed, the Hamiltonian
system associated with the problem determines a geodesic flow with
degeneracy near the boundary ∂Ω. As a result, assuming that the flow
is integrable, the level set of two first integrals may have the following
pathologies near ∂Ω. First, it is non-compact, and, second, it consists
of trajectories whose momenta go to infinity at finite time.

However, using the completed phase space near the boundary al-
lows one to compactify the first integrals level sets and obtain tori
(called non-standard Liouville tori). The projection of these tori onto
the configuration space may have singularities such as standard caus-
tics (as in case of standard Liouville tori) and non-standard caustics
(that project onto the boundary). Locally, in a neighborhood of caus-
tics the studied asymptotic solutions can be represented in terms of
Airy function (for a standard caustic) or Bessel function (for a non-
standard one). Our main result [1] is that we construct the global uni-
form asymptotic formula for the solution in terms of Airy and Bessel
functions. We also show that these formulas are quite efficient in a
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sense that they can be quite easily numerically implemented using
software like Wolfram Mathematica, Maple, etc.

The work was supported by the Russian Science Foundation (project No. 19-

11-13042).

REFERENCES

1. Anikin A. Yu., Dobrokhotov S. Yu., Nazaikinskii V. E.,
Tsvetkova A. V. “Asymptotic eigenfunctions of the operator ∇D(x)∇
defined in a two-dimensional domain and degenerating on its boundary and
billiards with semi-rigid walls,” Differential Equations, 55, No. 5, 664–657
(2019).

LOCAL AND GLOBAL DYNAMICS IN 1-D
HAMILTONIAN LATTICES: FROM PHYSICS TO

ENGINEERING

Bountis A.

Department of Mathematics University of Patras, Patras, Greece;
tassosbountis@gmail.com

Local and global stability properties of 1-D Hamiltonian lattices of
N interacting particles have been studied extensively for more than 60
years, in view of their important implications for statistical mechanics
and solid state physics [1]. Most studies so far have focused on ana-
lytic interparticle interactions, ranging from nearest neighbor to full
range, often in the presence of on-site potentials [2]. Moreover, under
periodic driving at one end of the lattice, the phenomenon of energy
supratransmission in such lattices has been observed and thoroughly
documented [2,3]. In the present lecture, I will first describe an ap-
proach from local to global dynamics and statistics in these systems
based on the study of some of their simple periodic solutions (nonlin-
ear normal modes) as the total energy is increased. Next, I will apply
this approach to study analogous phenomena in 1-D Hamiltonian lat-
tices that arise in various mechanical engineering applications, such as
graphene elasticity, Hollomons law of work hardening and hysteretic
damping. These involve nearest-neighbor interactions that are: (a)
either purely non-analytic, (b) harmonic plus non-analytic or (c) ana-
lytic with non-analytic hysteretic damping effects [4,5]. In some cases,
I will apply periodic driving at one end of the lattice and demonstrate
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the occurrence of energy supratransmission for the first time in these
systems.

REFERENCES

1. Bountis A. and Skokos H., “Complex Hamiltonian Dynamics,” Synergetics
series of Springer Verlag, 6, (2012).

2. A. Bountis, “Complex Dynamics and Statistics of 1-D Hamiltonian Lattices:
Long Range Interactions and Supratransmission,” Proc. of 6 th Ph.D. School
on “Mathematical Modeling of Complex Systems,” Nonlinear Phenomena in
Complex Systems, 2 (3) (2020).

3. Macias-Diaz J. E., Bountis A., Christodoulidi H., “Energy Transmission in
Hamiltonian Systems with Globally Interacting Particles and On-Site Poten-
tials,” Mathematics in Engineering, 1(2): 343358, (2019).

4. Bountis A., Kaloudis K., Oikonomou Th., Many Manda B., Skokos
Ch., “Stability Properties of 1-D Hamiltonian Lattices with Non-Analytic
Potentials,” International Journal of Bifurcation and Chaos, to appear,
(2020).

5. Bountis A., Kaloudis K., Spitas Ch., “Periodically Forced Nonlinear Os-
cillators With Hysteretic Damping,” Journal of Computational Nonlinear
Dynamics, to appear (2020).

DYNAMICAL SYSTEMS ON 2-TORUS, MODEL OF
JOSEPHSON JUNCTION AND ISOMONODROMIC

FAMILIES OF LINEAR SYSTEMS

V. M. Buchstaber1, Yu. P. Bibilo2, A. A. Glutsyuk3,
S. I. Tertychnyi4

1Steklov Mathematical Institute (Moscow), All-Russian Scientific
Research Institute for Physical and Radio-Technical Measurements

(VNIIFTRI, Mendeleevo), Russia; buchstab@mi.ras.ru
2University of Toronto, Mississauga, Canada; y.bibilo@gmail.com

3CNRS, France (UMPA, ENS de Lyon and ISC J.-V.Poncelet);
National Research University Higher School of Economics

(HSE, Moscow), Russia); aglutsyu@ens-lyon.fr
4All-Russian Scientific Research Institute for Physical and

Radio-Technical Measurements (VNIIFTRI, Mendeleevo), Russia;
bpt97bpt97@gmail.com

In 1973 B.Josephson received Nobel Prize for discovering a new
fundamental effect in superconductivity concerning a system of two
superconductors separated by a very narrow dielectric (this system is
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called the Josephson junction): there could exist a supercurrent tun-
neling through this junction. We will discuss a mathematical model
of the overdamped Josephson junction given by a family of first or-
der non-linear ordinary differential equations that defines a family of
dynamical systems on two-torus T2 = R2

φ,τ/2πZ2:{
φ̇ = 1

ω(− sinφ+B + A cos τ)

τ̇ = 1.
(1)

Physical problems of the Josephson junction led to studying the
rotation number of system (1) as a function of the parameters (B,A)
with fixed ω and to the problem on the geometric description of the
phase-lock areas: the level sets of the rotation number function ρ with
non-empty interiors. The rotation number has interpretation as aver-
age voltage over a long time interval (up to known constant) at the
Josephson junction. In our case the phase-lock areas exist only for in-
teger rotation numbers (quantization effect [2]). Each phase-lock area
is a connected garland of a countable number of components going to
infinity in the direction parallel to the A-axis [9]. Any two neighbor
components are separated by one point, which is called constriction
(provided it does not lie in the abscissa axis). On the complement to
the phase-lock areas, which is an open set, the rotation number func-
tion ρ is an analytic submersion that induces its fibration by analytic
curves [5].

Motivated by physical questions, we introduce a new function: the
Shapiro step function Sr,ω(A), whose modulus is equal to the length of
the horizontal slice at level A of the phase-lock area with the rotation
number r and given ω. It is an analytic function, whose zeros in the
semi-axis {A > 0} are the constrictions. Problem: study analytic prop-
erties of the function Sr,ω(A) and points Ak(r, ω) where |Sr,ω(Ak(r, ω))|
is a local maximum.

Dynamical systems (1) on torus can be complexified to Riccati
equations and then transformed to a 3-parameter family of linear sys-
tems on the Riemann sphere with two irregular nonresonant singu-
larities at 0 and at ∞: the so-called ”systems of class J”, which are
equivalent to special double confluent Heun equations [2, 3, 4].

In the talk we give a survey of statements of problems and re-
sults of series of works [1–7, 9]. We discuss two very recent new
results obtained in [1]. The first result states that in each phase-
lock area with rotation number r all the constrictions lie on the same
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vertical line {B = rω}. It confirms the experimental fact discovered
by S.I.Tertychnyi, D.A.Filimonov, V.A.Kleptsyn, I.V.Schurov in 2011,
see [7]. The second result states that all the constrictions are ”posi-
tive” (i.e., the corresponding germ of phase-lock area contains a germ
of vertical line), solving a conjecture stated in [6]. Some of key argu-
ments used in their proof are the following. Systems of class J lie in
a 4-dimensional family of linear systems that is the union of Jimbo
isomonodromic families [8] given by solutions of a Painlevé 3 equa-
tion. Systems of class J correspond to order 1 poles of solutions and
thus, form a local cross-section to these families.

We present some open problems.
V.M.Buchstaber and S.I.Tertychnyi were supported by Russian Foundation for

Basic Research (project no. 17-01-00192).

A.A.Glutsyuk was supported by the Russian Science Foundation (RSF) (project

no. 18-41-05003).
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APPROXIMATE QUASISYMMETRY
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Quasisymmetry is a spatial symmetry of first-order guiding-center
motion that guarantees integrability. In this work, quasisymmetry
is addressed in terms of approximate symmetries for arbitrary mag-
netic fields. Approximate quasisymmetry to leading order turns out
to be the same as exact quasisymmetry. Phase-space symmetries of
guiding-center motion introduce weak quasisymmetry. Nonetheless,
magnetohydrostatics imposes quasisymmetry to leading order.
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ON SINGULARLY PERTURBED PARTLY DISSIPATIVE
SYSTEMS OF EQUATIONS

V. F. Butuzov

Moscow State University, Moscow, Russia;
butuzov@phys.msu.ru

The system of equations

∂u

∂t
+ w(x)

∂u

∂x
− ∂2u

∂x2
= F̃ (u, v, x),

∂v

∂t
+ w(x)

∂v

∂x
= f̃(u, v, x),

(1)

is called a partially dissipative system of reaction-diffusion-transfer
type. The word ”partially” reflects the fact that the diffusion term
is contained in only one of the two equations. In particular, such
systems arise in mathematical models of chemical kinetics, where the
sought functions u(x, t) and v(x, t) are the concentrations of reacting
substances.

In the case of fast reactions, the reactive terms F and f contain
large factors, namely the rate constants of fast reactions, due to which
system (1) is reduced to the form characteristic of singularly perturbed
systems of equations

εα
(∂u
∂t

+ w(x)
∂u

∂x
− ∂2u

∂x2

)
= F (u, v, x),

εβ
(∂v
∂t

+ w(x)
∂v

∂x

)
= f(u, v, x),

(2)

where ε > 0 is a small parameter, α > 0, β > 0.
In recent years, for systems of the form (2), a number of prob-

lems have been considered, the solutions of which have boundary and
internal transition layers [1-6]. The asymptotic expansions of these
solutions have singularities due to the specifics of system (2).

In the talk an overview of the results obtained for systems of the
form (2) is presented.
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STAR-TRIANGLE TRANSFORMATION OF THE
POTTS MODEL PARTITION FUNCTION AS A

SOLUTION FOR THE TETRAHEDRON EQUATION
AND RELATED COMBINATORIAL TOPICS

B. S. Bychkov

Higher School of Economics, Moscow, Russia;
P.G. Demidov Yaroslavl State University, Yaroslavl, Russia.

boris.bychkov@gmail.com

he talk is devoted to several well-known functional relations in the
theory of polynomial graph invariants, as well as some new interpreta-
tions. The identification of Tutte polynomials with partition functions
of the Potts-type models seems to be an ideal possibility to apply the
methods from the theory of integrable models of statistical physics to
the combinatorics of graphs and vice versa.

I will present at least one proof of the fact that the parameter trans-
formation, defining the invariance of the n=2 Potts model partition
function under the star-triangle transformation, gives an orthogonal
solution for the local Yang-Baxter equation and for the tetrahedron
equation. Using the Biggs duality on the space of Potts model par-
tition functions I will present several results about the connection
between the chromatic and flow polynomials and as a consequence
obtain shifting order formulas on the space of Potts model partition
functions.

The talk is based on the recent joint work with A.Kazakov and
D.Talalaev.
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SOLVABLE SYSTEMS OF TWO COUPLED
FIRST-ORDER ODES WITH HOMOGENEOUS CUBIC

POLYNOMIAL RIGHT-HAND SIDE

Calogero F.1,2, Payandeh F.3

1Physics Department, University of Rome ”La Sapienza”, Rome,
Italy; francesco.calogero@uniroma1.it
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3Department of Physics, Payame Noor University (PNU), PO BOX
19395-3697 Tehran, Iran;
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The solution xn (t) , n = 1, 2, of the initial-values problem is re-
ported of the autonomous system of 2 coupled first-order ODEs with
homogeneous cubic polynomial right-hand sides,

ẋn = cn1 (x1)
3 + cn2 (x1)

2 x2 + cn3x1 (x2)
2 + cn4 (x2)

3 , n = 1, 2 ,

when the 8 (time-independent) coefficients cn` are appropriately de-
fined in terms of 7 arbitrary parameters, which then also identify the
solution of this model. The inversion of these relations is also inves-
tigated, namely how to obtain, in terms of the 8 coefficients cn`, the
7 parameters characterizing the solution of this model; and 2 con-
straints are explicitly identified which, if satisfied by the 8 parameters
cn`, guarantee the solvability by algebraic operations of this dynamical
system. It is also identified a related, appropriately modified, class of
(generally complex ) systems, reading

·
x̃n = iωx̃n+cn1 (x̃1)

3 +cn2 (x̃1)
2 x̃2 +cn3x̃1 (x̃2)

2 +cn4 (x̃2)
3 , n = 1, 2 ,

with iω an arbitrary imaginary parameter, which feature the remark-
able property to be isochronous, namely their generic solutions are—
as functions of real time—completely periodic with a period which is,
for each of these models, a fixed integer multiple of the basic period
T = 2π/ |ω|.
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DISCRETIZATION OF THE NLS-TYPE HIERARCHY

A. Doikou1, S. Sklaveniti2

1 Heriot-Watt University, Edinburgh, UK; A.Doikou@hw.ac.uk
2 Heriot-Watt University, Edinburgh, UK; ss153@hw.ac.uk

The non-linear Schrödinger (NLS) equation is one of the funda-
mental and widely studied equations in mathematical physics with
broad application in physical problems, such as the non-linear optics
and ocean waves. In this talk, we will present some recent results on
the semi-discrete matrix NLS-like (DNLS) hierarchy. More precisely,
we will construct the Lax pairs for the whole hierarchy via the dress-
ing method and derive the corresponding soliton solutions via suitable
choices of Darboux transformations.
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UNIVARIABLE FRACTAL INTERPOLATION
FUNCTIONS

V. Drakopoulos
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We show how to construct a family of (discrete) dynamic systems,
namely iterated function systems, whose graph is the attractor, a frac-
tal set, of some continuous function which interpolates a given set of
data. In particular, fractal interpolation functions which are widely
presented in the literature can be obtained as particular cases of our
construction.
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SINGULAR MEASURES AND INFORMATION
CAPACITY OF TURBULENCE CASCADES

G. Falkovich, M. Shavit
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How weak is the weak turbulence? Here we analyze turbulence
of weakly interacting waves using the tools of information theory. It
offers a unique perspective for comparing thermal equilibrium and
turbulence. The mutual information between resonant modes in a
finite box is shown to be stationary and small in thermal equilibrium,
yet to grow with time in weak turbulence. We trace this growth to the
concentration of probability on the resonance surfaces, which can go
all the way to a singular measure. The surprising conclusion is that no
matter how small is the nonlinearity and how close to Gaussian is the
statistics of any single amplitude, a stationary phase-space measure is
far from Gaussian, as manifested by a large relative entropy. This is
a rare piece of good news for turbulence modeling: the resolved scales
carry significant information about the unresolved scales. The mutual
information between large and small scales is the information capacity
of turbulent cascade, setting the limit on the representation of subgrid
scales in turbulence modeling.

24



Conference “Integrable Systems and Nonlinear Dynamics” (ISND-2020)

NONLINEAR DYNAMICS AND MECHANICS OF
FLUIDS IN THE POROUS MEDIA

V. A. Galkin

Federal Research Center for System Development, Surgut Branch;
Tyumen Industrial University; Surgut State University, Russia;

val-gal@yandex.ru

The paper is devoted to the systems of nonlinear equations pos-
sessing applied significance in mathematical physics particularly in
gas and fluid dynamics (Navier–Stokes equations), in physical kinetics
(Boltzmann and Smoluchowski equations, Maxwell–Vlasov equations
for media with discontinuities of parameters) and in phase transition
models. The nonlinear operators in above equations are not continu-
ous in Banach spaces specific for these conservation laws. There are
discussed general mathematical structures, connected with approxi-
mate methods convergence. The existence and uniqueness theorems
for global solutions of the Cauchy problem for quasilinear and semi-
linear systems are proved. The problem of passage to the limit via
small parameters for singularly perturbed problems are considered.
The problems of computations in above models are discussed too.

We consider the problem of connectedness in the metric space
which model is so called porous medium. The main question is the
description of measure for quantity of global connections between two
points in the space provided the local distribution of connections in
micro-structure is given. A porous medium is a network of inter-grain
channels formed by internally connected intermediate spaces between
particles. Natural examples of above problems are investigated in de-
scription of global structures produced by connected pores in matrix of
oil-containing sands and similar problems arise in research of materi-
als of nuclear reactors under influence of neutron flow.Those problems
are close to the description of structures in multidimensional billiard
game. The description of global structures in the above examples con-
nected with solutions of Smoluchowskii kinetic Equation [1], which is
directly leads to the non-local Hopf Equation [2] for density distri-
bution function of global conductivity paths in structure of porous
medium.

The mathematical models of physical systems, consisting of statis-
tically plenty of particles (rare gases, dispersive systems, plasma, sys-
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tems with phase transition surfaces) and continuous medium mechan-
ics models are based on fundamental relations of the balance which
general name is conservation laws.

Their applications are well-known, particularly, in connection with
gas dynamics equations and hydrodynamics, physical kinetics equa-
tions by Boltzmann and Smoluchowski, plasma theory, models of crys-
tal growth etc. [1].

The extension of the concept of a solution (functional solutions) [1]
makes it possible to justify the convergence of approximate methods
in presence of an a’priori estimate of approximations in Lloc1 (Q, ν),
which is uniform in the parameter provided nonlinear operators are
not continuous in this space.

Theorem. Let the approximate (singularly perturbed) method has
properties of uniform weak approximation and uniform weak stabil-
ity in Tikhonov topology. Then we can point out uniqueness class of
functional solutions and we can construct in it correctness class of the
Cauchy problem U such that on some directed set of the parameters
approximations converge to the points in the set U for given set of
initial data.

We apply this Theorem to the for singularly perturbed problem
for systems with small parameters (viscosity method)

∂u(i)(x, t)

∂t
+

n∑
j=1

∂f
(i)
j (u, x, t)

∂xj
= αi

n∑
j=1

∂2u(i)

∂x2
j

, u|t=0 = u0,

t > 0, x ∈ Rn, 1 ≤ i ≤ m, α = (α1, α2, . . . , αm), αi ≥ 0.

In this case we obtain description of correctness classes consisting
of functional solutions.

The exact solutions of Navier–Stokes Equations and MHD for in-
compressible fluids in porous space are presented.

The research was supported by RFBR grants 18-01-00343, 20-04-
60123.
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FOKAS-LENELLS EQUATIONS ON HERMITIAN
SYMMETRIC SPACES
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We formulate multi-component integrable generalizations of the
Fokas-Lenells equation [1,2] which are associated with each irreducible
Hermitian symmetric space. We provide a description of the underly-
ing structures associated to the integrability, such as Lax formulation
and the bi-Hamiltonian formulation of the equations. Two reductions
are considered as well one of which leads to a nonlocal integrable
model. Two examples with symmetric spaces of types A.III and BD.I
are presented in details.
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This work is an extension of our results in [1, 2]. Here we con-
struct the two nonequivalent gradings in the algebra A5 ' sl(6). The
first one is the standard one obtained with the Coxeter automorphism
C1 = Sα1

Sα3
Sα5

Sα2
Sα4

using its dihedral realization. In the second one
we use C2 = C1R where R is the external automorphism of A5. For
each of these gradings we constructed the basis in the corresponding
linear subspaces g(k), the orbits of the Coxeter automorphisms and
the related Lax pairs generating the corresponding mKdV hierarchies.
We found compact expressions for each of the hierarchies in terms of
the recursion operators. At the end we wrote explicitly the first non-
trivial mKdV equations and their Hamiltonians. We also derived the
completeness relations for the ‘squared solutions‘ of the Lax operator
and use them to: i) prove that the inverse scattering method is a gen-
eralized Fourier transform, and ii) to obtain explicit expressions for
the action-angle variables of the MKdV equations.

The authors were supported by the Russian Foundation for Basic Research

(project no. 12-01-00012).
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FOURIER TRANSFORM METHOD FOR SOME TYPES
OF NONLINEAR PARTIAL DIFFERENTIAL

EQUATIONS

V. I. Gishlarkaev
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vakhag@mail.ru

In [1], based on ideas from statistical hydrodynamics related to the
Hopf equation, a method is presented that makes it possible to apply
the Fourier transform to solve the Cauchy problem for a wide class of
equations of the form

∂tu(t, x) +
∑
|α|≤m

εαaα(t)∂αxu(t, x) = f(t, x), (1)

where the factors εα coincide with either 1 or one of the spatial vari-
ables. In the same paper, the possibility of a slightly different approach
is indicated, when the application of the Fourier transform reduces the
original problem to the Cauchy problem for first-order partial differ-
ential equations. In this paper, based on this approach, we propose a
method for analyzing the Cauchy problem for evolutionary partial dif-
ferential equations with power nonlinearities. The method is based on
the Fourier transform, which allows rewriting the original equation as
an integro-differential one, in which the integration is carried out not
over the time variable, over which the equation contains the derivative,
but over the spatial one. The space of coefficients is defined by the-
orems of the Paley-Wiener-Schwarz type on the Fourier transform so
that the known functions under the integral in the integro-differential
equation are compactly supported - we use this to derive some a priori
estimates.

We now move to an exact formulation. We introduce the spacess:
C l,A
Fm,T (Rn) := {Φ|[0,T ]×Rn|(Φ(·, x) ∈ C l(0, T )∀x ∈ Rn) ∧ (∀t ∈ [0, T ]

Φ(t, ·) : Cn → C) is an entire function: (Φ(t, x) = 0 ∀(t, x) ∈ [0, T ]×
Rn)∧(∃ c = c(Φ), r ∈ R : |Φ(z)| < c(1+||z||Cn)−mer|z| ∀(t, z) ∈ [0, T ]×
Rn)}; l,m ∈ N∪{0} - the space of coefficients; we observe that, if aα ∈
C0,A
F 1,T (Rn), then from the Paley-Wiener theorem sup atα(t, ·) ⊂⊂ Rn,

where atα(t, ·) is differentiable and ∂xja
t
α(t, ·) ∈ L2(R

n) ∀j; CA
L (Rn) =

{Φ|Rn : (Φ : Cn → C is an entire function: ((ImΦ(x) = 0 ∀x ∈
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Rn)∧(
∫
Rn |Φ(x)|2dx <∞)∧(∃c, r ∈ R : |Φ(z)| < cer|Imz|Rn ∀z ∈ Cn))}

is the space of initial data. In what follows C l,A
F,T (Rn) means that

C l,A
F 0,T (Rn), Hm(Rn) are Sobolev spaces.

The main result is the following Theroem.
Theorem. Assume that for some T1 in the problem

∂tu(t, x) +
∑k0

k=0

∑
|α1|≤M,�,|αl|≤M εα1�αla

k
α1,�,αl(t, x)uk∂α

1

x u(t, x)·
� · ∂αlx u(t, x) = f(t, x);
u|t=0 = u0(x) ∈ CA

L (Rn)
(2)

εα1�αl = 1 for even
∑l

j=1 |αj| and in the opposite case εα1�αl is equal

to one of the spatial variables xi; f ∈ C0,A
F,T1

(Rn); alkε ∈ C0,A
F,T1

(Rn)

for even
∑l

j=1 |αi| and alkα ∈ C0,A
F 1,T1

(Rn) in the opposite case; let m

be an arbitrary natural number with m > M + n2−1. Then ∃C =
C(akα1...αl, f(t, x), n,m,M) > 0, ∃T ∈ (0, T1] such that for initial condi-
tions satisfying

∫
|u0(x)|2dx < C, there exists u ∈ L1([0, T ]; Hm(Rn))

such that u(·, x) ∈ C1(0, T ) ∀x ∈ Rn, u is a solution of problem (2).
Note that problem (2) is not only of purely theoretical interest,

but also of applied – there is a large number of equations of the form
(2) that describe real processes (see, for example, [2]).
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LOCAL SOLUTIONS OF SLOW-FAST DELAY
OPTOELECTRONIC MODEL

D. V. Glazkov
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We consider the delay optoelectronic oscillator model (see [1] and
references)

ε
dx

dζ
= y − x+ β

[
cos2(x(ζ−ν)+φ)− cos2 φ

]
,

dy

dζ
= −x.

Substituting ζ = νt and transformating we obtain the second-order
equation

ε

ν
ẍ+ ẋ+ νx = b1ẋ(t−1) + 2b2x(t−1)ẋ(t−1) + 3b3x

2(t−1)ẋ(t−1) + . . . ,

where b1 = −β sin(2φ), b2 = −β cos(2φ), b3 = 2β sin(2φ)/3.

We consider some critical cases in zero solution stability problem.
In the vicinity of the zero steady state other solutions can be repre-
sented as a series by degrees of a small parameter ε.

To define the main part of solutions we construct special non-linear
boundary value problems with periodic boundary conditions as normal
forms without small parameter. Non-local dynamics of BVPs specifies
local behavior of origin equation solutions.

The author was supported by the Russian Foundation for Basic Research (project

no. 18-29-10043).
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NEIMARK–SACKER BIFURCATION AND STABILITY
ANALYSIS FOR FAMILY OF MAPS MODELLING

DELAYED LOGISTIC EQUATION
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Difference approximations of the logistic equation with delay or
the Hutchinson equation

du

dt
= r[1− u(t− 1)]u. (1)

are studied. This equation is widely used in problems of mathemat-
ical ecology and belongs to the fundamental models of population
dynamics [1,2]. The nonnegative function u(t) models the normalized
population density, and the positive parameter r characterizes the rate
of its growth. Numerical analysis of equation (1) implies the construc-
tion of families of difference equations, the accuracy of calculating the
solution with the help of which depends, first of all, on the chosen ap-
proximation step. The smaller the step is chosen, the more accurate
the calculations are. At the same time, the mappings under study
can in themselves serve as models of population dynamics. Therefore,
their study and comparison of dynamic properties with the original
continuous equation is of considerable interest.

Variants of difference approximations of the Hutchinson equation
were analyzed in papers [3–5]. To obtain the corresponding mappings,
in [3,4] the derivative with respect to t was replaced by the difference
forward or backward, and in [5] the mapping was constructed on the
basis of difference approximations of an integral equation equivalent
to the equation (1). We consider a mapping constructed on the basis
of approximating the time derivative using the central difference.

We fix an arbitrarily natural k and assume that the time step is
equal to 1/k. If the time derivative in (1) is replaced by the cen-

tral difference
u(t+ 1/k)− u(t− 1/k)

2/k
, than we obtain the difference

32



Conference “Integrable Systems and Nonlinear Dynamics” (ISND-2020)

equation of order k + 1

un+1 = un−1 +
2r

k
(1− un−k)un, n > 0, (2)

where t = n/k, n ∈ Z, and the value u(n/k) is replaced by un.
One of the fundamentally important properties of the equation (1)

is that it has an orbitally asymptotically stable cycle for r > π/2 (see
[1,2]). This cycle bifurcates from the equilibrium state u ≡ 1 as a
result of the Andronov – Hopf bifurcation. For a model mapping, this
cycle corresponds to a stable invariant curve (see [3–6]).

We have proved that for critical values of the parameter r, at which
in problem (2) the solution u ≡ 1 loses its stability, the characteristic
polynomial of equation (2) linearized on this solution has two pairs of
roots (without resonances) on the unit circle of the complex plane.

When constructing the normal form of equation (1) it turned out
that for such an approximation this equation ceases to adequately
model the dynamics of the Hutchinson equation. In particular, for the
values of the parameter r corresponding to the loss of stability of a unit
equilibrium state, a stable invariant curve does not branch off from it,
to which a stable cycle (stable periodic oscillations) corresponds to
the Hutchinson equation. This shows that when choosing a difference
scheme that simulates the dynamics of the Hutchinson equation, it is
not always possible to obtain a difference equation with the required
properties.

This work was performed under the State assignment, project no. 1.10160.

2017/5.1.
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CONSTRUCTION OF CYCLES WITH A DIFFERENT
NUMBER OF BURSTS FOR EACH OF THE
COMPONENTS IN THE RING OF RELAY

OSCILLATORS
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Let us consider a ring network of m oscillators with a unidirectional
synaptic coupling

u̇j = λ [F (uj(t− 1)) +G(uj−1(t− h)) ln(u∗/uj)]uj,
j = 1, . . . ,m, u0 ≡ um.

(1)

Here uj > 0 is a normalized neural membrane potentials, λ � 1
characterises the rate of electric processes in the system, u∗ = exp(c λ),
c = const ∈ R, the relay functions F (u) and G(u) have the form

F (u)
def
=

{
1, 0 < u ≤ 1,
−a, u > 1,

G(u)
def
=

{
0, 0 < u ≤ 1,
b, u > 1.

a, b = const > 0.
Fix natural numbers k1, . . . , km. In this work we construct a peri-

odic solutions such that j-th component has kj high bursts after long
enough segment with small values.

The reported study was funded by RFBR according to the research
project 18-29-10055.
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PERIODIC RELAXATION SOLUTIONS OF CERTAIN
GENERALIZATION OF LOGISTIC EQUATION WITH

STATE-DEPENDENT DELAY

V. O. Golubenets

P. G. Demidov Yaroslavl State University, Yaroslavl, Russia;
golubenets2010@yandex.ru

Consider logistic equation with state-dependent delay:

Ṅ = λN [1−N(t− h(λ)− f(N(t− T )))] ,

where λ is sufficiently large (λ � 1) and state depends on time in
the past. This equation is a generalization of state-dependent delay
equation considered in [1].

Under certain assumptions about functions h(λ) and f(N), the
next theorem holds:

Theorem 1. If λ� 1, then original equation has nonlocal relax-
ation periodic solution N ∗(t, λ). The initial condition of this solution
belongs to the convex, bounded and closed set.

Asymptotic properties of solution N ∗(t, λ) were also investigated.
Namely, if λ� 1, then the period and the amplitude of this solution
are asymptotically large, and its minimal value is asymptotically small.

We used the method of the big parameter [2] in order to establish
these facts.

Acknowledgments: The reported study was funded by RFBR, project number

19-31-27001.
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GRASSMANN EXTENSIONS OF YANG–BAXTER
MAPS

G. G. Grahovksi

Department of Mathematical Sciences, University of Essex, UK;
gggrah@essex.ac.uk

In this talk we show that there are explicit Yang-Baxter maps
with Darboux-Lax representation between Grassmann extensions of
algebraic varieties. Motivated by some results on noncommutative
extensions of Darboux transformations, we first derive a Darboux
matrix associated with the Grassmann-extended derivative Nonlinear
Schrödinger (DNLS) equation, and then we deduce novel endomor-
phisms of Grassmann varieties, which possess the Yang–Baxter prop-
erty. In particular, we present ten-dimensional maps which can be
restricted to eight-dimensional Yang-Baxter maps on invariant leaves,
re- lated to the Grassmann-extended NLS and DNLS equations. We
consider their vector generalisations.

Part of this talk is in joint collaboration with S. Konstantinou-
Rizos and A. V. Mikhailov [1].

We discuss the integrability of such maps.
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QUANTUM DOUBLES AND QUANTUM VERTEX
ALGEBRAS

Dimitri Gurevich

Universite Polytechnique de Hauts de France;
gurevich@ihes.fr

I plan to introduce some new classes of quantum algebras which
can be hopefully useful for constructing certain deformations of matrix
models. The role of the Reflection Equation algebra in their construc-
tion will be explained. The notion of quantum vertex algebra (Etingof,
Kazhdan, Kac and others) will be discussed.

GENERALIZED INVARIANT MANIFOLDS FOR
INTEGRABLE EQUATIONS AND THEIR

APPLICATIONS

I. T. Habibullin1, A. R. Khakimova2

1Institute of Mathematics, Ufa Federal Research Centre, Russian
Academy of Sciences, Ufa, Russia;
habibullinismagil@gmail.com

2Institute of Mathematics, Ufa Federal Research Centre, Russian
Academy of Sciences, Ufa, Russia;

aigul.khakimova@mail.ru

In the talk a notion of the generalized invariant manifold for non-
linear integrable equation will be discussed. Recently in our works
[1-6] it has been observed that this kind objects provide an effective
tool for evaluating the Lax pairs and recursion operators.

The approach developed in [1-6] explains the essence of the Lax
pair phenomenon. In fact, the Lax pair in 1+1 dimension is naturally
(internally) derived from the nonlinear equation under consideration.
First we find the linearization (Frechet derivative) of the nonlinear
equation. The linearized equation obviously includes the dynamical
variables of the original equation as well, which are already consid-
ered as functional parameters. Now we find an ordinary differential
equation, also depending on the dynamical variables of the original
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equation, compatible with the linearized equation. We call this or-
dinary differential equation a generalized invariant manifold. There
exist many such manifolds, among them there are also nonlinear ones.
In order to evaluate the generalized invariant manifolds we use the
consistency with the linearized equation which allows to derive a sys-
tem of differential (difference) equations that is highly overdetermined
due to the presence of the independent parameters – dynamical vari-
ables of the original nonlinear equation. In all of the examples studied
(KdV, mKdV, Kaup-Kupershmidt equation, Krichever-Novikov equa-
tion, Volterra type lattices from Yamilov list, two equations of KdV
type found by Svinolupov and Sokolov, Garifullin-Mikhailov-Yamilov
non-autonomous lattice, sine-Gordon equation and several hyperbolic
type equations, etc) the corresponding overdetermined systems are ef-
fectively solved and the desired non-trivial manifolds are found. Triv-
ial generalized invariant manifolds are constructed quite elementarily
by using the classical symmetries. A manifold that is consistent with
the linearized equation if and only if the original nonlinear equation
is satisfied is called non-trivial. In essence, this requirement means
that a pair consisting of a linearized equation and a generalized in-
variant manifold defines a Lax pair. It is curious that usual Lax pairs
do not belong to this class, but they can be derived from this class
by suitable transformations. Note that new Lax pairs are interesting
in themselves. For example, an invariant manifold corresponding to
a nontrivial linear pair of the lowest order is very easily transformed
into the recursion operator.

Since the invariant manifold deals with two sets of dynamical vari-
ables defined by the equation in question and the linearized equation,
it has two orders. Sometimes the problem of determining orders causes
problems. The corresponding relationship between these two orders
for the case of equations of the KdV type was established in [7].

In [6] it was shown with the example of the Volterra lattice that a
nonlinear Lax pair can be used for constructing particular solutions of
the original nonlinear equation. To this end we first find a non-trivial
invariant manifold depending on two constant parameters. Then we
assume that ordinary difference equation defining the generalized in-
variant manifold has a solution polynomially depending on one of the
parameters. The assumption is rather severe, it produces some ordi-
nary difference and differential equations, providing a separation of
the variables. Application of the method is illustrated by examples.
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CHAOTIC DYNAMICS IN A PLANAR MODEL OF
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Using a two dimensional atomic Hamiltonian model of graphene
[1], we investigate the material’s chaotic dynamics through numerical
simulations implementing symplectic integration techniques [2]. We
study periodic graphene sheets (modelling the bulk behaviour) as well
as finite width graphene nanoribbons (GNRs) across a range of tem-
peratures, considering both the usual 12C isotopes as well as the effect
of doping with 13C. By computing the maximal Lyapunov Exponent
(MLE) (see e.g. [3]) we quantify the chaoticity of these structures, also
comparing the stability of armchair and zigzag edge GNRs [4]. The
resultant Lyapunov time, i.e. the inverse of the MLE, is compared with
the characteristic time scales of the fastest normal modes, providing
context to the rate of chaotisation in graphene. Several simplifying
modifications of the Hamiltonian are also briefly considered, demon-
strating that chaos is inherent in the two dimensional geometry, with
simple harmonic interatomic couplings yielding positive MLE values.
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NONCOMMUTATIVE KEPLER DYNAMICS:
SYMMETRY GROUPS AND BI-HAMILTONIAN

STRUCTURES

M. N. Hounkonnou1, M. J. Landalidji2, M. Mitrović 3
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Integrals of motion are constructed from noncommutative (NC)
Kepler dynamics, generating SO(3), SO(4), and SO(1, 3) dynamical
symmetry groups. The Hamiltonian vector field is derived in action-
angle coordinates, and the existence of a hierarchy of bi-Hamiltonian
structures is highlighted. Then, a family of Nijenhuis recursion oper-
ators is computed and discussed.
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YANG–BAXTER MAPS ASSOCIATED WITH
DARBOUX TRANSFORMATIONS, LIE GROUPS, AND
LINEAR APPROXIMATIONS OF REFACTORISATION

PROBLEMS
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Centre of Integrable Systems, P.G. Demidov Yaroslavl State
University, Yaroslavl, Russia; s-igonin@yandex.ru

Many (but not all) results of my talk are presented in the joint
work with V.M. Buchstaber, S. Konstantinou-Rizos, and M.M. Preo-
brazhenskaia [1].

Yang–Baxter maps (YB maps) are set-theoretical solutions to the
quantum Yang–Baxter equation. Relations of YB maps with inte-
grable systems (including integrable PDEs and lattice equations) and
with various algebraic structures are very active areas of research.

For a set X = Ω× V , where V is a vector space and Ω is regarded
as a space of parameters, a linear parametric YB map is a YB map

Y : X ×X → X ×X

such that Y is linear with respect to V and one has πY = π for the
projection

π : X ×X = (Ω× V )× (Ω× V )→ Ω× Ω.

These conditions are equivalent to certain nonlinear algebraic relations
for the components of Y . Such a map Y may be nonlinear with respect
to parameters from Ω.

In my talk, I will present general results on such maps, including
clarification of the structure of the algebraic relations that define them
and several transformations which allow one to obtain new such maps
from known ones. Also, methods for constructing such maps will be
described.

In particular, developing an idea from [Konstantinou-Rizos S. and
Mikhailov A. V. 2013 J. Phys. A: Math. Theor. 46 425201], I plan to
demonstrate how to obtain linear parametric YB maps from nonlinear
Darboux transformations of some Lax operators, using linear approxi-
mations of matrix refactorisation problems corresponding to Darboux
matrices. Also, I will present a wide class of new linear parametric
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YB maps (with nonlinear dependence on parameters) associated with
Lie groups.

I acknowledge the support by the Russian Science Foundation
(grant No. 20-71-10110).
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RELAXATION MODES IN THE RING OF
OSCILLATORS WITH DELAYED FEEDBACK
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Consider a mathematical model of a ring of the simplest generators
[1] with the nonlinear delayed feedback

u̇j + uj = λF (uj(t− T )) + γ(uj−1 − 2uj + uj+1), (j = 1, . . . , N),
u0 ≡ uN , uN+1 ≡ u1.

(1)
Here uj (j = 1, . . . , N) are scalar functions, N = 2k+ 1 (k = 1, 2, . . .),
non-zero coupling parameter γ is some constant greater than −1

4 (at
these values of the parameter γ system (1) is dissipative), F (·) is a
smooth nonlinear compactly supported function (it is equal to zero,
when absolute value of function argument is greater than 1), positive
parameter λ is sufficiently large (λ� 1).

We study the nonlocal dynamics of model (1) in the phase space
C([−T, 0];RN).

In the case γ > 0 we find the asymptotics of the homogeneous
relaxation cycle and show that all solutions with initial conditions
from some region of the phase space after some time have the same
leading part of the asymptotics.

In the case −1
4 < γ < 0 we calculate asymptotics of all solutions

of system (1) with initial conditions from some region of the phase
space. Based on asymptotics we construct auxiliary two-dimensional
map. This map determines dynamics of initial system: rough fixed
point (cycle) of this map corresponds to relaxation cycle of initial
system (1). We prove that this map has at least N cycles, so initial
system has at least N coexisting relaxation cycles.

The author was supported by the President of Russian Federation grant No

MK-1028.2020.1.
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THE DYNAMICS OF SINGULAR PERTURBED
SYSTEM OF TWO DELAY DIFFERENTIAL

EQUATIONS
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Consider system of two delay differential equations

γ−1ẋ+ x = x(t− T )(a+ d1y + d2y
2),

ẏ = by + cx2.
(1)

This problem is somewhat simplified model of FDML-laser [1]. Let
study the dynamics of (1) in small neighbourhood of equilibrium in
the phase space C[−T ;0] × R.

Main assumption is that the value of γT is large enough. Thus,
system (1) is singularly perturbed. This can be done in one of three
main cases:
1) γ is large;
2) T is large;
3) both γ and T are large.

Denote ε = (γT )−1 � 1 and make time substitution t→ tT :

εẋ+ x = x(t− 1)(a+ d1y + d2y
2),

εµẏ = by + cx2, µ ≥ 0.
(2)

Let b < 0, so the equilibrium state loses stability if |a| = 1. In this
case the asymptotically large number of roots of the corresponding
characteristic equation (spectrum points) lies arbitrarily close to the
imaginary axis. Thus, critical cases have infinite dimension.

Let a is close to ±1: a = ±(1 + εpa1), p > 0.
In the critical cases special nonlinear equations are constructed -

quasinormal forms - which do not depend on a small parameter or
depend on it regularly. Solutions of quasinormal forms determine the
main parts of the asymptotic expansion of solutions (1).

The quasinormal forms are nonlinear parabolic boundary problem.
Its’ exact form is strongly depend on relationship between small pa-
rameters ε, εµ and εp.
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INFINITE-DIMENSIONAL TURING BIFURCATION IN
CHAINS OF CONNECTED VAN DER POL SYSTEMS

S. A. Kaschenko
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Consider the local dynamics in the neighbourhood of the equi-
librium state of ring of coupled van der Pol equations. The main
assumption, which opens the way to the application of asymptotic
methods, is that the number of N elements in the chain is sufficiently
large. The transition from a discrete system to a system with a contin-
uous spatial variable is naturally carried out. It is shown that critical
cases in the stability problem have infinite dimension. As the main
results, special nonlinear boundary value problems of a parabolic type
are constructed, which play the role of a first approximation equation.
The nonlocal dynamics of these boundary value problems describes
the local behavior of the solutions of the original system.

INTEGRABLE TWO-COMPONENT SYSTEMS OF
DIFFERENCE EQUATIONS

P. Kassotakis

pavlos1978@gmail.com

We will present two lists of two-component systems of integrable
difference equations defined on the edges of the Z2 graph. The integra-
bility of these systems is manifested by their Lax formulation which
is a consequence of the multi-dimensional compatibility of these sys-
tems. Imposing constraints consistent with the systems of difference
equations, we recover known integrable quad-equations including the
discrete version of the Krichever-Novikov equation. The systems of
difference equations give us in turn quadrirational Yang-Baxter maps.
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STABILITY OF PIECEWISE SMOOTH SOLUTIONS OF
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Consider the spatially distributed equation

ξ̇ = ξ − β(ξ2 −M(ξ2))− (1− β)(ξ3 −M(ξ3)),

with boundary conditions

ξ(t, x+ 1) = ξ(t, x),

M(ξ) = 0,

where β ∈ [0, 1], ξ = ξ(t, x) is a step function of the variable x for

each t ≥ 0, M(ξ) =
1∫

0

ξ(t, x)dx.

In some cases, this boundary value problem is the simplified quasi-
normal form of a model of optoelectronic oscillator (see [1]).

In this research we proved that in this boundary value problem
there exists a one-parameter family of solutions depending on the pa-
rameter α ∈ (0, 1) in the form of step functions

ξ(t, x) =



0, x = 0

a(α), 0 < x < α

0, x = α

b(α), α < x < 1

0, x = 1

.

We proved that if β = 1 then for any α ∈ (0, 1) these solutions are
unstable. If β = 0 then these solutions are stable for 1

3 < α < 2
3 .

In the other cases, for any β ∈ (0, 1) there exist an interval (α1, α2)
in which these solutions are stable.

This research was supported by the Russian Foundation for Basic
Research (grant No. 18-29-10055).
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CLUSTER MAPS ASSOCIATED WITH THE DISCRETE
KDV EQUATION

Theodoros Kouloukas

Nonlinear recurrences arise from cluster algebras with periodicity.
In this talk we will study a class of nonlinear recurrences from cluster
mutation-periodic quivers obtained as reductions of the discrete Hirota
equation, which are related to travelling wave solutions of the lattice
KdV equation. We will demonstrate the integrability in the Liouville
sense of the associated birational maps using the properties of the
underlying cluster algebra structure.
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QUADRATIC CONSERVATION LAWS FOR
EQUATIONS OF MATHEMATICAL PHYSICS

V. V. Kozlov

Steklov Mathematical Institute, Moscow, Russia;
vvkozlov@mi-ras.ru

Linear systems of differential equations in a Hilbert space are con-
sidered that admit a positive-definite quadratic form as a first integral.
The following three closely related questions are the focus of interest
in this paper: the existence of other quadratic integrals, the Hamilto-
nian property of a linear system, and the complete integrability of such
a system. For non-degenerate linear systems in a finite-dimensional
space essentially exhaustive answers to all these questions are known.
Results of a general nature are applied to linear evolution equations
of mathematical physics: the wave equation, the Liouville equation,
and the Maxwell and Schrödinger equations.

This author was supported by a grant from the Russian Science Foundation

(project no. 19-71-30012).
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HIGHER-ORDER ANALOGUES OF THE PAINLEVé
EQUATIONS ASSOCIATED WITH SAWADA-KOTERA

AND KUPERSHMIDT HIERARCHIES AND THEIR
PROPERTIES

Nikolay A. Kudryashov

Department of Applied Mathematics,
National Research Nuclear University MEPHI,

31 Kashirskoe Shosse, 115409 Moscow, Russian Federation;
nakudr@gmail.com

The self-similar reductions of the Sawada-Kotera and the Kupersh-
midt equations are studied. Results of Painlevé test for these equations
are given. Lax pairs for soling the Cauchy problems to these nonlin-
ear ordinary differential equations are found. Special solutions of the
Sawada-Kotera and the Kupershmidt expressed via the first Painlevé
equation are presented. Exact solutions of the Sawada-Kotera and
the Kupershmidt equations by means of general solution for the first
member of K2 hierarchy are given. Special polynomials for expres-
sions of rational solutions for considered equations are introduced.
The differential-difference equations for finding special polynomials
corresponding to the Sawada-Kotera and the Kupershmidt equations
are found. Nonlinear differential equations of sixth order for special
polynomials associated with the Sawada-Kotera and the Kupershmidt
equations are obtained. Lax pairs for nonlinear differential equations
with special polynomials are presented. Rational solutions of the self-
similar reductions for the Sawada-Kotera and the Kupershmidt equa-
tion are given.
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A LEAN WARNING MODEL FOR RECOGNITION OF
PANDEMIC SCALE DANGER OF VIRUS INFECTIONS

N. A. Kudryashov1, M. Chmykhov2, M. Vigdorowitsch3

1National Research Nuclear University MEPhI, Department of
Applied Mathematics, Moscow, Russian Federation;

nakudr@gmail.com
2National Research Nuclear University MEPhI, Department of

Applied Mathematics, Moscow, Russian Federation;
machmykhov@mephi.ru

3Angara GmbH, Düsseldorf, Germany;
mv016@yahoo.com

A simple two parametric SIS-model of infection spreading has been
developed and solved. It describes two processes, namely infection
and recovery/deaths. Its solution has a quasi-logistic functional form
and includes a naturally arisen constant combination perceived as an
infection index. When tested on SARS Cov-2 pandemic as well as
influenza epidemic data, the model have shown its promising potential
for forecasts. A full-featured SIR-model affined with the SIS-model has
been built and solved.

A lot of epidemiological models having been built in the past,
concentrate typically on accuracy in reproduction of approximated
pandemic data, developing both analytical and numerical methods as
well as on attempts to build universal or lean (with focus on finally ex-
pected pandemic results rather than process behaviour) approaches to
grasp the general or final picture [1-3]. In the present work the attempt
was undertaken to develop a light model able to recognise potential
pandemics on the course of expansion initial phase, so that almost
everyone could use it for tests on publicly available data. Considering
a number of infected n(t), we assume N to represent a community
population with free contacts among individuals within. If N − n(t)
is a number of susceptibles, the differential equation of the infection
and recovery/death process reads:

nt = αn(N − n)− βn. (1)

(where α > 0 is contact and β ≥ 0 recovery/death rate). A Riccati-
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type Eq. (1) has the solution

n(t) =
M(αN − β)

Mα + (αN − β −Mα) exp[−(αN − β)t]
. (2)

The results of a least square method approximation according to
Eq. (2) are presented in Fig. 1. While compared with that for in-
fluenza epidemic data, infection index h = αN − β has been found to
have a threshold h = 0.13 above which the course of infection pretends
to be characterised as a pandemic and below that as epidemic.

Fig. 1: Dependence of the number of infected on time in China
(blue, from 22-Jan till 19-Feb-2020, M = 547, α = 5.1007 · 10−6, β =
7162.76, h = 0.2969, R2 = 0.969) and Germany (green, 28-Jan till 08-
Apr-2020, M = 4, α = 1.8568 · 10−6, β = 154.22, h = 0.16688, R2 =
0.995). Data source [4]. Crosses and circles: processed data; points:
unused data (pandemic decrease); solid – approximating curves,
dashed – segments of those for the time periods corresponding to the
decreasing pandemic data.

A sister, full-featured SIR-model has been built that includes the
same basic ideas as the SIS-model but more accurately treats the
number of susceptibles N(t):

nt = αn
(
N(0)− β

∫ t

0

n(τ)dτ − n
)
− βn.

52



Conference “Integrable Systems and Nonlinear Dynamics” (ISND-2020)

Through a new function representing nt/n, it can be transformed into
a 2nd order ordinary differential equation whose general solution has
the form (np is the infectives peak value):

t = t0 +

∫
ndn

{
exp

[α(n− np)− β(1− log β)

β
− 1

β
W
(
− 1

β
e

α(n− np)− β(1− log β)

β
)]
− β

} ,

where W (x) is the Lambert function that is real-valued for x > –1/e
with two branches.

This research was partly (NK, MC) supported by Russian Science Foundation

Grant No. 18-11-00209 “Development of methods for investigation of nonlinear

mathematical models”.
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CUBIC-QUINTIC-SEPTIC OPTICAL SOLITONS IN THE
OPTICAL FIBER BRAGG GRATINGS OF THE

NONLINEAR DIFFERENTIAL EQUATION

N. A. Kudryashov, K. V. Kan

Department of Applied Mathematics, National Research Nuclear
University MEPhI, 31 Kashirskoe Shosse, 115409 Moscow,

Russian Federation;
nakudr@gmail.com, kan 13@mail.ru

Travelling wave reduction of the system of two equations describing
the propagation of nonlinear waves in the optical fiber Bragg gratings
is considered. The compatibility conditions for the overdetermined
system of equations are found. Solitary wave solutions in optical fiber
gratings are demonstrated.

In this work we consider the system of two equations in the follow-
ing form:

iut + ic1ux + c2uxx + ic3uxxx + c4uxxxx + ic5uxxxxx + c6uxxxxxx+

+(c7|u|2 + c8|v|2)u+ (c9|u|4 + c10|u|2|v|2 + c11|v|4)u+

+(c12|u|6 + 3c13|u|4|v|2 + 3c14|u|2|v|4 + c15|v|6)u+ sv = 0,

ivt + id1vx + d2vxx + id3vxxx + d4vxxxx + id5vxxxxx + d6vxxxxxx+

+(d7|u|2 + d8|v|2)v + (d9|u|4 + d10|u|2|v|2 + d11|v|4)v+

+(d12|u|6 + 3d13|u|4|v|2 + 3d14|u|2|v|4 + d15|v|6)v + ru = 0,

(1)

where ru and sv are additional terms responsible for the reflective
properties of the waves.

The system (1) corresponds to the sixth order equation with cubic-
quintic-septic law nonlinearity considered in [1, 2, 3]. Eq.(1) describes
pulse propagation in the optical fiber Bragg gratings for two waves.

Using traveling wave reductions

u(x, t) = y1(z)ei(kx−kx0−ωt), v(x, t) = y2(z)ei(kx−kx0−ωt), z = x− C0t,
(2)

we obtain the overdetermined system for y1(z) and y2(z), consisting
of four equations.
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Getting the compatibility conditions of the obtained system we
obtain a new system:

y1,zzzzzzc6 + (15k2c6 + c4)y1,zzzz + (75k4c6 + 6k2c4 + c2)y1,zz + y7
1c12+

+3y5
1y

2
2c13 + y5

1c9 + 3y3
1y

4
2c14 + y3

1y
2
2c10 + y3

1c7 + 61y1k
6c6 + y1y

6
2c15+

+5y1k
c
4 + y1y

4
2c11 + y1y

2
2c8 + (k2c2 − C0k + ω)y1 + sy2 = 0,

y2,zzzzzzd6 + (15k2d6 + d4)y2,zzzz + (75k4d6 + 6k2d4 + d2)y2,zz + y7
2d15+

+3y5
2y

2
1d14 + y5

2d11 + 3y3
2y

4
1d13 + y3

2y
2
1d10 + y3

2d8 + 61y2k
6d6 + y2y

6
1d12+

+5y2k
4d4 + y2y

4
1d9 + y2y

2
1d7 + (k2d2 − C0k + ω)y1 + ry1 = 0.

(3)
We reduce the system (3) to one equation using the compatibility

conditions. Then we look for the solution of the first equation of this
system (3) in the form R(z) = γ0 + γ1F (z), supposing, without loss of
generality, that γ0 = 0. R(z) is a new function, which equals: R(z) =
y1(z)
A1

= y2(z)
B1

. F (z) is a solution of the equation F 2
z = F 2(1−χF 2) and

has the form:

F (z) =
4aeα(z−z0)

4a2e2α(z−z0) + χ
(4)

Substituting R(z) = γ0 + γ1F (z) into the first equation of the
system (3) we obtain the solitary wave solutions:

y1(z) =
4aA1

4a2eαz + χe−αz
, y2(z) =

4aB1

4a2eαz + χe−αz
. (5)

Then, the solution of the initial system (1) can be written in the
form:

u(x, t) =
4aγ1A1e

i(−kx+ωt+θ0)

4a2eα(x−C0t−z0) + χe−α(x−C0t−z0))
,

v(x, t) =
4aγ1B1e

i(−kx+ωt+θ0)

4a2eα(x−C0t−z0) + χe−α(x−C0t−z0))
. (6)

This research was supported by Russian Science Foundation (RSF)

no. 18-11-00209.
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(a) (b)

Fig. 2: Solitary waves y1(z) and y2(z) (b), real parts of u(x,t) and
v(x,t) (b) with a = 1.5, A1 = 1.0, B1 = 0.6, k = 4.5, C0 = 1.0, α =
0.7, θ0 = 1.0, z0 = 12.0, γ1 = 1.45, χ = 0.1, ω = 2.28
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SOLITARY WAVE SOLUTIONS OF THE COUPLED
NONLINEAR SCHRÖDINGER EQUATION WITH

CUBIC-QUINTIC-SEPTIC FORM OF NONLINEARITY

N. A. Kudryashov, A. A. Kutukov

Department of Applied Mathematics, National Research Nuclear
University MEPhI, 31 Kashirskoe Shosse, 115409 Moscow,

Russian Federation;
nakudr@gmail.com, alexkutuk@gmail.com

The system of equations for describing the propagation of optical
pulses in Bragg gratings with cubic nonlinearity is considered. The so-
lution for traveling wave reduction of considered equations with some
constraints on parameters is found. Bragg solitons or gap solitons
arise in nonlinear optical media with a weakly varying periodic re-
fractive index [1]. Optical fiber with Bragg gratings is widely used in
telecommunication systems [2].

Let us consider the coupled nonlinear Schrödinger equation in fiber
Bragg gratings with polynomial nonlinearity [3, 4, 5]

iqt + a1rxx +
(
b1|q|2 + c1|r|2

)
q +

(
ξ1|q|4 + η1|q|2|r|2 + ζ1|r|4

)
q

+
(
l1|q|6 +m1|q|4|r|2 + n1|q|2|r|4 + p1|r|6

)
q + iα1qx + β1r = 0,

(1)

irt + a2qxx +
(
b2|r|2 + c2|q|2

)
r +

(
ξ2|r|4 + η2|r|2|q|2 + ζ2|q|4

)
r

+
(
l2|r|6 +m2|r|4|q|2 + n2|r|2|q|4 + p2|q|6

)
r + iα2rx + β2q = 0,

(2)

where q(x, t) and r(x, t) are the amplitudes of the forward- and backward-
propagating waves, aj, bj, cj, ξj, ηj, ζj, lj,mj, nj, pj, αj, βj(j = 1, 2) are
parameters of the optical system. We look for exact solution of the
system (1), (2) in the form

q(x, t) = y1(z) ei(κx−ωt+θ), r(x, t) = y2(z) ei(κx−ωt+θ), z = x− C0t,
(3)

where κ, ω, θ and C0 are arbitrary constants. After substitution (3)
into (1) and (2) we have the system of fourth equations for real and
imaginary parts of the system (1), (2) in the form

a1y
′′
2 + l1y

7
1 +m1y

5
1y

2
2 + n1y

3
1y

4
2 + p1y1y

6
2 + η1y

3
1y

2
2 + ξ1y

5
1

+ζ1y1y
4
2 − κ2a1y2 + b1y

3
1 + c1y1y

2
2 − κα1y1 + ωy1 + β1y2 = 0,

(4)
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a2y
′′
1 + l2y

7
2 +m2y

2
1y

5
2 + n2y

4
1y

3
2 + p2y

6
1y2 + η2y

2
1y

3
2 + ξ2y

5
2

+ζ2y
4
1y2 − κ2a2y1 + b2y

3
2 + c2y

2
1y2 − κα2y2 + ωy2 + β2y1 = 0,

(5)

2κa1y
′
2 − (C0 − α1) y

′
1 = 0, (6)

2κa2y
′
1 − (C0 − α2) y

′
2 = 0. (7)

If 4 a1 a2κ
2 6= (α2 − C0) (α1 − C0) then the system (6), (7) has the

solution y1 = const, y2 = const and this case is not interesting. If

2κa1

C0 − α2
=
C0 − α1

2κa2
, (8)

then

y2 = σy1 + C, (9)

where C is the constant of integration and σ = α1−v
2 a1 κ

. Let the integra-

tion constant C = 0. After substituting the expression (9) into the
system (4), (5), multiplying this equations by y′1 and integrating over
z we have the system (4), (5) in the form

4a1σy
′2
1 +

(
σ6p1 + σ4n1 + σ2m1 + l1

)
y8

1 +

(
4

3
σ4ζ1 +

4

3
σ2η1 +

4

3
ξ1

)
y6

1

+
(
2σ2c1 + 2b1

)
y4

1 +
(
4σβ1 + 4ω − 4κ2σa1 − 4κα1

)
y2

1 + C1 = 0,
(10)

4a2y
′2
1 +

(
σ7l2 + σ5m2 + σ2

3n2 + σp2

)
y8

1 +

(
4

3
σ5ξ2 +

4

3
σ3η2 +

4

3
σζ2

)
y6

1

+
(
2σ3b2 + 2σc2

)
y4

1 +
(
4ωσ + 4β2 − 4κ2a2 − 4κσα2

)
y2

1 + C2 = 0.
(11)

The balancing number of the system (10), (11) is p = 1
3 . Assuming

y1(z) = y(z)
1
3 in equations (10), (11) we obtain

A1y
10/3 +B1y

8/3 + C1y
4/3 + E1y

2 + F1y
4 +G1y

2 = 0, (12)

A2y
10/3 +B2y

8/3 + C2y
4/3 + E2y

2 + F2y
4 +G2y

2 = 0, (13)
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where

A1 =
4

3
σ4ζ1 +

4

3
σ2η1 +

4

3
ξ1, A2 =

4

3
σ5ξ2 +

4

3
σ3η2 +

4

3
σζ2,

B1 = 2σ2c1 + 2b1, B2 = 2σ
(
σ2b2 + c2

)
, E1 =

4a1σ

9
, E2 =

4a2

9
,

F1 = σ6p1 + σ4n1 + σ2m1 + l1, F2 = σ
(
σ6l2 + σ4m2 + σ2n2 + p2

)
,

G1 =
(
−4κ2a1 + 4β1

)
σ − 4κα1 + 4ω, G2 = (−4κα2 + 4ω)σ−
−4κ2a2 + 4β2.

(14)
We can integrate the system (12), (13) under the constraints on pa-
rameters

A1 = 0, A2 = 0, B1 = 0, B2 = 0, C1 = 0, C2 = 0 (15)

and the compatibility condition

E1

E2
=
F1

F2
=
G1

G2
. (16)

The system (12),(13) under conditions (15),(16) has the general solu-
tion in the form

y(z) =
−4E1G1e

√
−E1G1(z−z0)

E1

−4E2
1G1F1e

−2
√

−E1G1z0
E1 + e

2
√

−E1G1z

E1

. (17)

We found the exact solution of the system of equations (1), (2) in the
form

q(x, t) = y(z)
1
3 ei(κx−ωt+θ), r(x, t) = σy(z)

1
3 ei(κx−ωt+θ), z = x− C0t,

(18)
with conditions on parameters (8), (15), (16).

This research was supported by Russian Science Foundation Grant

No. 18-11-00209 ‘’Development of methods for investigation of nonlinear mathe-

matical models”.
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Generalized Kuramoto-Sivashinsky equation describes a number of
nonlinear physical processes. We investigate the change of its dynam-
ics by computing the largest Lyapunov exponent as a function of the
dispersive parameter. To transform PDE into the system of ODEs we
use a five-point stencil. It is shown how the system’s behavior transi-
tions from chaotic to periodic as the bifurcation parameter increases.

Generalized Kuramoto-Sivashinsky equation has the form

ut + umux + uxx + βuxxx + uxxxx = 0, (1)

where β is the constant coefficient and m is the degree of nonlinearity.
It describes a number of physical processes, such as waves in chemical
reactions [1] and flame front propagation [2].

We choose periodic boundary conditions u(L, t) = u(0, t), ux(L, t) =
ux(0, t), and so forth. The initial condition is

u(x, 0) = sin(
πx

L
), (2)

where L is the size of the domain.
To approximate spatial derivatives of the PDE (1) we use the five-

point stencil. Benettin algorithm [4] is applied to compute largest
Lyapunov exponents of the obtained ODE system, consisting of N
equations, where N is the number of points within the uniform grid.
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Fig. 1: Largest Lyapunov exponent of the equation (1) as a function
of β for L = 85 for m=1(left) and for m=3(right).
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Fig. 2: Solution of the equation (1) as a function of x and t for β and
L = 85 for m=1(top) and m=3(bottom).

Lyapunov exponent as a function of β for m = 1 and m = 3 is
presented on the fig. 1 and fig. 2 show how the solution of (1) gradu-
ally changes its behavior from chaotic to periodic as the parameter β
increases.
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NONLINEAR DIFFERENTIAL EQUATIONS FOR
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Two nonlinear partial differential high-order equations are consid-
ered. They are used for describing propagation pulses in optical fibers.
The Painlevé analysis for traveling wave reduction of the equations is
completed. As a result of Painlevé test the condition on some param-
eters of the models are obtained. For constructing the exact solution,
simplest equations method is used. Periodic and solitary wave solu-
tions are found.

In addition to the popular model of propagation optical pulses
[1-3], there are some new models. In particular the method of con-
structing the high-order partial differential equations for description
optical pulses are proposed in paper [4]. We study two equations that
are constructed in article [4].

Fourth-order equations with third- , fifth-degree nonlinearity and
non-local nonlinearity:

iut + αuxx + iβuxxx + uxxxx

+µ|u|2u+ ν|u|4u+ κ|u|2uxx + i
βκ
2
|u|2ux = 0,

(1)
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α, β, µ, ν, κ are the parameters of equation (1).
Sixth-order equations with third- , fifth- , seventh-degree nonlin-

earity and non-local nonlinearity:

iut + αuxx + iβuxxx + χuxxxx + iδuxxxxx + uxxxxxx

+µ|u|2u+ ν|u|4u+ κ|u|6u+ ρ|u|2uxx + i
δρ

3
|u|2ux = 0,

(2)

α, β, δ, µ, ν, ρ, κ, χ are the parameters of equation (2).
We consider equations using traveling wave reduction

u(x, t) = y(z) exp (i(ψ(z)− ω t)), z = x− C0 t. (3)

Using traveling wave variables (3), we obtain a systems of ordinary
differential equations for the imaginary and real parts. These systems
do not pass the Painlevé test, but we get some conditions under which
the models is simplified. For the traveling wave reduction of equation
(1) we obtain

C0 = −1

2
αβ − 1

8
β3, ψz = −β

4
. (4)

For the reduction of equation (2) we get the following conditions

C0 = − 1

81
δ5 − 1

27
χδ3 − 1

3
αδ, β =

5

27
δ3 +

2

3
χδ, ψz = −δ

6
. (5)

Using condition (4) we get the traveling wave reduction of equation
(1) in the form

yzzzz +

(
α +

3

8
β2

)
yzz +

(
ω +

αβ2

16
+

5

256
β4

)
y +

(
µ+

1

16
κβ2

)
y3

+νy5 + κy2yzz = 0.
(6)

Under condition (5) the traveling wave reduction of equation (2)
takes the form

yzzzzzz +

(
5

12
δ2 + χ

)
yzzzz +

(
25

432
δ4 +

1

6
χδ2 + α

)
yzz + ρy2yzz

+

(
1

36
αδ2 +

5

1296
χδ4 + ω +

61

46656
δ6

)
y +

(
µ+

1

36
δ2ρ

)
y3

+νy5 + κy7 = 0.

(7)
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Using the method of simplest equations [5] for equations (6) and
(7), we construct the exact solutions of (6), (7). We get the periodic
wave solution in the form

y(z) = A

√
3d

3℘
(
z − z0,

4
3c

2 − 4ad, 4
3acd−

8
27c

3
)
− c

, (8)

where z0, a are arbitrary constants, A, c, d - depend on the parameters
of the equations. And we obtain a solitary wave solution in the form

y(z) = A
4ce
√
c(z−z0)

e2
√
c(z−z0) − 4ac

, (9)

where z0, a are arbitrary constants, A, c - depend on the parameters
of the equations.

This research was supported by Russian Foundation for Basic Research (RFBR),

18-29-10039.

REFERENCES

1. Kudryashov N.A., Safonova D.V., Biswas A. Painlevé analysis and solution
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SPATIALLY INHOMOGENEOUS EQUILIBRIUM
STATES OF THE CAHN-HILLIARD EQUATION

A. N. Kulikov1, D. A. Kulikov1

1Demidov Yaroslavl State University, Yaroslavl, Russia;
kulikov d a@mail.ru

The Cahn–Hilliard equation was obtained in [1] as a model de-
scribing the boundary interaction in chemical kinetics with allowance
for spatial effects. Subsequently, it was used in a number of branches
of physics, for example, hydrodynamics, [2]. Usually, in the literature
devoted to its analysis, one considers its “one-dimensional” version,
when the unknown function depends only on the variable t and one
spatial variable x (see, [3-4] and the list of references therein).

A more natural version of the Cahn–Hilliard equation is the one
where the unknown function depends on two spatial variables. In
this case, after normalizing t, x, y and the function u = u(t, x, y), the
Cahn–Hilliard equation can be written as

ut = −∆2
µu− b∆µu− b2∆µ(u2) + ∆µ(u3), (1)

where x, y ∈ [0, π], 0 < µ ≤ 1,∆µ = uxx + µuyy, and ∆1 = ∆ is the
Laplace operator. For this version of the Cahn–Hilliard equation, two
boundary value problems are studied, namely

u|x=0,x=π = ∆µu|x=0,x=π = u|y=0,y=π = ∆µu|y=0,y=π = 0 (2)

ux|x=0,x=π = uxxx|x=0,x=π = uy|y=0,y=π = uyyy|y=0,y=π = 0. (3)

An analysis of the boundary value problem (1), (2) showed that
for b < 1 + µ it has a homogeneous equilibrium state u = 0 is asymp-
totically stable and unstable if b > 1+µ. For b = 1+µ+γε, ε in(0, ε0)
for the boundary value problem (1), (2), we have a case close to the
critical simple zero value of the stability spectrum. In this case, for
all sufficiently small ε in(0, ε0), the boundary-value problem realizes
a variant of transcritical bifurcation if b2 6= 0, or bifurcations of type
“plug” if b2 = 0.

A more complex bifurcation problem arises in the analysis of the
boundary value problem (1), (3): it has a family of equilibrium states
Sα : u(t, x) = α, α ∈ R.
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Further, the main results of the analysis of the boundary value
problem (1), (3) are formulated for the case b2 = 0. For b2 6= 0 these
statements take on a more cumbersome form.

Let µ ≤ 1, b2 = 0 and Sα be such that α2 > (b− µ)/3. Then, Sα is
stable and unstable if α2 < (b − µ)/3. When α2(ε) = (b − µ − γε)/3,
where γ = ±1, ε ∈ (0, ε0), 0 < ε0 << 1, a critical case is realized in
the problem of stability of the equilibrium state: for µ < 1 twice the
eigenvalue of the stability spectrum, and for µ = 1(µ = 1− γ2ε) three
times zero eigenvalue.

Let µ < 1, 0 < ε0 << 1. In this case, the boundary value problem
(1), (2) for each ε ∈ (0, ε0) has spatially heterogeneous solutions

u(y, ε) = α(ε)± 2ε1/2
∣∣∣2b− 5µ

∣∣∣−1/2

cos y + o(ε1/2).

Such solutions are stable if b ∈ (µ, 5µ/2) and unstable if b > 5µ/2.
For µ = 1 (µ = 1− γ2ε, γ2 ∈ R) a bifurcation problem of codimen-

sion 2 arises and spatially inhomogeneous equilibrium states appear
that depend only on x, only on y, and also from x, y at the same time.
The question of their stability is investigated and asymptotic formulas
are obtained for them. To study bifurcation problems, the method of
integral manifolds and normal forms was used.

This work was supported by the Russian Foundation for Basic
Research, project no. 18-01-00672.
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ANALYSIS OF BIFURCATIONS OF SPATIALLY
INHOMOGENEOUS SOLUTIONS OF A NONLINEAR

PARABOLIC EQUATION WITH THE OPERATOR
OF ROTATION OF THE SPATIAL ARGUMENT

AND DELAY

V. A. Kulikov

P.G. Demidov Yaroslavl State University, Yaroslavl 150003, Russia;
kulikov7677@gmail.com

For a differential equation with a lagging argument

ut(ρ, φ, t) + u(ρ, φ, t) = D∆ρφu(ρ, φ, t) +K(1 + γcos(uθ(ρ, φ, t− T )))
(1)

relatively to the function u(ρ, φ, t + s), specified in polar coordinates
0 ≤ ρ ≤ R, 0 ≤ φ ≤ 2π (R > 0) and t ≥ 0,−T ≤ s ≤ 0 (T > 0),
in which ∆ρφ is the Laplace operator inpolar coordinates, uθ(ρ, φ, t) ≡
u(ρ, (φ + θ)mod(2π), t) (0 ≤ θ < 2π) is the rotation operator of the
spatial argument, D,K are positive constants, 0 < γ < 1, in the area
K̄R × R+, where circle K̄R = {(ρ, φ) : 0 ≤ ρ ≤ R, 0 ≤ φ ≤ 2π},
R+ = {t : 0 ≤ t <∞}, an initial-boundary value problem of the form
is considered

uρ(R, φ, t) = 0, u(ρ, 0, t) = u(ρ, 2π, t), uφ(ρ, 0, t) = uφ(ρ, 2π, t),

u(ρ, φ, t+ s)|t=0 = u0(ρ, φ, s) ∈ H0(KR;−T, 0). (2)

In (2), the space of initial conditions H0(KR;−T, 0) = {u(ρ, φ, s) :
u(ρ, φ, s) ∈ C(K̄R × [−T, 0]), u(ρ, 0, s) = u(ρ, 2π, s), for each

s u(ρ, φ, s) ∈
◦
W 2

2 (KR)}}, where the space of the functions

∈
◦
W 2

2 (KR)} is obtained by closing the set of functions { u(ρ, φ) :
u(ρ, φ) ∈ C2(K̄R), uρ(R, φ) = 0, u(ρ, 0) = u(ρ, 2π), uφ(ρ, 0) = uφ(ρ, 2π)}
in the metric of the space of functions W 2

2 (KR).
The phase space of the initial-boundary value problem (1)-(2) is

the space
H(KR;−T, 0) = {u(ρ, φ, s) : u(ρ, φ, s) ∈ L2(KR) for each −T ≤
s ≤ 0, ||u(ρ, φ, s)||L2

∈ C([−T, 0])}, the norm of which is defined
as ||u(ρ, φ, s)||H = maxs ||u(ρ, φ, s)||L2

. By the area of the defini-
tion of the right-hand side of equation H0(KR;−T, 0). The norm in
H0(KR;−T, 0) is defined as ||u(ρ, φ, s)||H0

= maxs ||u(ρ, φ, s)||W 2
2
.
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By the solution of the initial-boundary value problem (1)-(2), de-
fined for t > 0, we mean the function u(ρ, φ, t + s) ∈ H0(KR;−T, 0)
(for each t > 0), continuously differentiable by t when t > 0, turning
equation (1) into an identity and satisfying the initial conditions (2).

The work investigates the dynamics of homogeneous equilibrium
states and their stability independing on the parameters of equation
(1). In the plane of the main control parameters(amplification coeffi-
cient K and rotation angle θ) using the D-partition method and its
special parametrization stability (instability) areas of heterogeneous
equilibrium states are constructed. The dynamics of stability areas is
investigated depending on the value of the delay and other parameters
of the initial-boundary value problem. Possible mechanisms of loss of
stability by homogeneous equilibrium states are revealed. Using the
center manifold method and bifurcation theory possible bifurcations
of spatially inhomogeneous self-oscillatory solutions and also their sta-
bility are explored. The dynamics of such solutions in the vicinity of
the boundary of the stability area in the plane of control parameters
is studied.

This work was supported by the Russian Foundation for Basic Re-
search (project code 19 31 90133)
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TOPOLOGICAL INVARIANTS OF MONGEAMPRE
GRASSMANNIANS
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We will give a description of the integral MongeAmpère Grassman-
nians IEω(x) for MongeAmpère operators with 2 and 3 independent
variables for a non-degenerate effective MongeAmpère form ω. We
shall give an account to the theory of the characteristic classes based
on the integral Grassmannians IEω(x) and show that even for n = 3
the topological structure of such Grassmannians is interesting and
complicated. Their topological structure (decomposition to various
regularity strata) is different for even (easy case) and for odd (highly
non-trivial) values of n. We find a relation with some exciting object
(Cayley affine cubic surface) which deserves future explorations.
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BIFURCATION SCENARIO IN THE AMPLITUDE
SYSTEM OF TWO COUPLED OSCILLATORS

E. A. Marushkina

P. G. Demidov Yaroslavl State University, Yaroslavl, Russia;
marushkina-ea@yandex.ru

In this work, Bazykin population model with a delay [1], [2], rep-
resented by a system of diffusely coupled oscillators is considered:

v̇1 = −
(
π
2 + ε

)
v1(t− 1)(1 + v1)

2 + εd(v2 − v1),

v̇2 = −
(
π
2 + ε

)
v2(t− 1)(1 + v2)

2 + εd(v1 − v2).
(1)

It is assumed that the coupling between oscillators in system (1) is
weak, that is, coefficient d > 0 is proportional to a small parameter 0 <
ε� 1. Note that if ε = 0, in the stability spectrum of the equilibrium
state (0, 0)T there is a pair of purely imaginary eigenvalues λ = ±iπ2
of multiplicity 2, which two linearly independent eigenfunctions are
corresponding.

To study the dynamics of system (1) we apply the standard method
of normal forms [3], using the following replacement:
v(t, ε) =

√
εv0j(t, τ) + εv1j(t, τ) + ε3/2v2j(t, τ) + . . . , where v0j(t, τ) =

zj(τ)ei
π
2 t + zj(τ)e−i

π
2 t, zj(τ) — complex–valued functions of a slow–

time variable τ = εt, j = 1, 2. At the third step of the algorithm
we obtain the following normal form written in amplitude and phase
variables from the solvability conditions for v2j(t, τ) in the class of
4–periodic by t functions:

ξ′1 = (1−D cos δ − ξ2
1)ξ1 +Dξ2 cos(ϕ+ δ),

ξ′2 = (1−D cos δ − ξ2
2)ξ2 +Dξ1 cos(ϕ− δ),

ϕ′ = −b(ξ2
2 − ξ2

1)−D
(
ξ1
ξ2

sin(ϕ− δ) + ξ2
ξ1

sin(ϕ+ δ)
)
.

(2)

In system (2) functions ξ1(s) and ξ2(s) represent slowly changing
amplitudes of cycles, and ϕ(s) — is the difference of their phases.
Parameters are selected as follows: b = 2(7 + 2π)/(7π − 8), D =
d
√
π2 + 4/π, δ = − arctan(π/2).
If the parameter b = bH = (π + 6)/(3π − 2), the system (2) fully

corresponds to the system obtained in [4] as the normal form of the
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system of diffuse weakly coupled Hutchinson equations. In works [4]–
[6] an analysis of its qualitative behavior is presented.

In this article, we investigate the dynamics of the normal form (2)
for the parameter b = 2(7+2π)/(7π−8). Consider the script of phase
transformations in the amplitude system (2), obtained with this value
of b when the parameter D is changed:

1. System (2), in contrast to the situation b = bH , does not have

subcritical stable regimes. For D > Dcr. = − cos δ + b
√

1− cos δ2 ≈
1.06472 the homogeneous equilibrium state (1, 1, 0)T is globally asymp-
totically stable.

2. At D = Dcr. a pair of symmetric stable equilibrium states
A = (ξ∗1(D), ξ∗2(D),
α∗(D))T and B = (ξ∗2(D), ξ∗1(D),−α∗(D))T branches off from a ho-
mogeneous one, inheriting its stability. Note that ξ∗1(D), ξ∗2(D) → 1,
α∗(D)→ 0 as D → Dcr..

3. When D < Dπ1 = 1/(2 cos δ) ≈ 0.931 an unstable equilibrium
state (ξ∗, ξ∗, π)T , where ξ∗ =

√
1− 2D cos δ, appears (corresponds to

oscillations in the antiphase of the initial system). Note that in the
case b = bH antiphase oscillations occur at Dπ1 > Dcr..

4. At D = DC ≈ 0.7547 symmetric stable equilibrium states A
and B gently lose stability with the birth of stable cycles CA and CB
(Andronov–Hopf bifurcation).

5. Further reduction of the parameter D leads to the fact that the
stable cycles CA and CB increase in size until, at D = DS ≈ 0.6391,
they close at the point ξ1 = ξ2 = 1, α = 0 (reverse separatrix splitting
bifurcation). As a result, two cycles CA and CB are combined into one
CU .

6. At D = Dπ2 = 1/(4 cos δ) ≈ 0.4655 the unstable cycle CΠ

branches off from the unstable state of equilibrium (ξ∗, ξ∗, π)T .
7. At D = Dπ3 ≈ 0.4647 the unstable cycle CΠ merges with the

stable cycle CU and disappears.
8. For 0 < D < Dπ3 the system has a unique, globally stable

equilibrium state (ξ∗, ξ∗, π)T , corresponding to antiphase oscillations
of the initial system.

The last four phase transformations exactly repeat the bifurcations
received in the normal form of the system of diffusely weakly coupled
Hutchinson equations (see, for example, [4]–[6]).

Dynamic properties of the normal form (2) are investigated. A
complete script of phase rearrangements occurring in the system when
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the diffusion parameter changes is given. It should be particularly
noted that in this case, other stable regimes of the normal form cannot
coexist with a homogeneous equilibrium state and for D > Dcr. a
homogeneous state of equilibrium is globally stable.

The author is grateful to S. D. Glyzin for problem statement.

The author was supported by the Russian Foundation for Basic Research (project

no. 18-29-10043).

REFERENCES

1. Bazykin A. D., Nonlinear dynamics of interacting populations, Institute of
computer research, Moscow–Izhevsk, 368 p. (2003).

2. Kolesov Yu. S., The problem of adequacy of ecological models, deposited in
VINITI (No. 1901-85), Yaroslavl, 162 p. (1985).

3. Glyzin S. D., Kolesov A. Yu., Local methods for the analysis of dynamic
systems, Yaroslavl State University, Yaroslavl, 92 p. (2006).

4. Glyzin S. D., “Dynamic properties of the simplest finite–difference approxi-
mations of the “reaction–diffusion” boundary value problem”, Differ. Equa-
tions, 33, No. 6, 808–814 (1997).

5. Glyzin S. D., “Age groups in Hutchinson equations”, Automatic Control and
Computer Sciences, 52, No. 7, 714–727 (2018).

6. Glyzin S. D., “Difference approximations of “reaction—diffusion” equation
on a segment”, Automatic Control and Computer Sciences, 52, No. 7, 762–
776 (2018).

73



Conference “Integrable Systems and Nonlinear Dynamics” (ISND-2020)

QUANTISATION IDEALS OF NONABELIAN
INTEGRABLE SYSTEMS

A. V. Mikhailov

University of Leeds, UK
a.v.mikhailov@gmail.com

In my talk I’ll show a new approach to the problem of quantisa-
tion of dynamical systems, introduce the concept of quantisation ideals
and provide meaningful examples. Traditional quantisation theories
start with classical Hamiltonian systems with functions taking val-
ues in commutative algebras and then study there non-commutative
deformations such that the commutators of observables tend to the
corresponding Poisson brackets as the (Planck) constant of deforma-
tion goes to zero. I am proposing to depart from systems defined on a
free associative algebra A. In this approach the quantisation problem
is reduced to a description of two-sided ideals J ⊂ A which define the
commutation relations (the quantisation ideals) in the quotient alge-
bras AJ = A�J and which are invariant with respect to the dynamics
of the system. Surprisingly this idea works rather efficiently and in a
number of cases I have been able to quantise the system, i.e to find
commutation relations for the system.

To illustrate this approach I’ll consider the quantisation problem
for the non-abelian Bogoyavlensky N–chains

dun
dt

=
N∑
k=1

(un+kun − unun−k), n ∈ Z (1)

where functions uk are elements of a free associative algebra A =
K〈. . . u−1, u, u1, . . .〉 over a zero characteristic field of constants K (the
case N = 1 corresponds to the well known Volterra chain). I will show
that system (1) admits a quantisation with commutation relations

unun+k = αun+kun, for 1 ≤ k ≤ N, and unun+k = un+kun, for

k > N, α ∈ K×.
Other examples will also be presented.
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THE GROWTH OF POLYNOMIAL LIE-REINHART
ALGEBRAS

D. V. Millionshchikov
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Consider a commutative algebra A over a commutative unital ring
R. The pair (A,L) is called a Lie-Rinehart algebra [1] if

1) L is a Lie algebra over the ring R which acts on A by left
derivations

X(ab) = X(a)b+ aX(b),∀a, b ∈ A, ∀X ∈ L;

2) the Lie algebra g is a A-module.
The pair (A,L) must satisfy the compatibility conditions

[X, aY ] = X(a)Y + a[X, Y ],∀X, Y ∈ L,∀a ∈ A;

(aX)(b) = a(X(b)), ∀a, b ∈ A,∀X ∈ L. (1)

Consider an important subclass [2] of graded Lie-Rinehart algebras
(A,L), where A = R[t1, t2, . . . , tp] is a graded polynomial algebra over
R such that

1) L is a free left module over R[t1, t2, . . . , tp] of rang N .
2) L = ⊕i∈ZLi is a Z-graded Lie algebra [Li,Lj] ⊂ Li+j, i, j ∈ Z,

and its grading is compatible with the grading R[t1, t2, . . . , tp].

p(t)L ∈ Li+deg(p(t)), deg(L(q(t)) = deg(q(t)) + i, L ∈ Li.

where p(t), q(t) are homogeneous polynomials R[t1, t2, . . . , tp] of degree
deg(p(t)) and deg(q(t)) respectively. The algebra gradingR[t1, t2, . . . , tp]
is defined on generators by the formulas

deg(t1) = m1, . . . , deg(tp) = mp,mi ∈ Z.

We will discuss the growth of a Lie algebra (over R), generated by the
left free module L over R[t1, t2, . . . , tp]. Its growth rate is related to
the integrability of some systems of hyperbolic PDE (Klein-Gordon
equation) [3,4].
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DEGENERATE RESONANCES IN THE
QUASI-PERIODICALLY FORCED DUFFING

EQUATION WITH THE ASYMMETRY OF THE
POTENTIAL WELL

K. E. Morozov

Lobachevsky State University of Nizhii Novgorod,
Nizhnii Novgorod, Russia;
kirwamath@gmail.com

Non–conservative quasi-periodic perturbations of two–dimensional
nonlinear Hamiltonian systems are studied. In contrast to the previ-
ously considered case of Hamiltonian systems with monotonic rota-
tion, we suppose that the eigenfrequency of the unperturbed system
has stationary points. If the corresponding phase curve is resonant,
then the resonance is called degenerate. Systems where degenerate
resonances may occur are relevant to applications. An example is a
widespread Duffing type equation with the asymmetry of the poten-
tial well. We study the structure of the degenerate resonance zone of
the equation and establish the conditions for the existence of resonant
quasi–periodic solutions. The problem of oscillations synchronization
is considered as well. Numerical results complement the study.

The authors were supported by the Russian Foundation for Basic Research

(projects no. 18-01-00306, 20-31-90039).
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PERIODIC AND STATIONARY SOLUTIONS OF
NONLINEAR REACTION-DIFFUSION PROBLEMS

WITH SINGULARLY PERTURBED BOUNDARY
CONDITIONS

N. N. Nefedov1, E. I. Nikulin2, N. N. Derugina3

1 Department of Mathematics, Faculty of Physics, Lomonosov
Moscow State University, 119899 Moscow, Russia;

nefedov@phys.msu.ru
2 Department of Mathematics, Faculty of Physics, Lomonosov

Moscow State University, 119899 Moscow, Russia;
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3Department of Mathematics, Faculty of Physics, Lomonosov Moscow
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We present an extension of asymptotic method of differential in-
equalities (see [1] and references there in) to new classes of problems
with singularly perturbed boundary conditions. We illustrate our re-
sults by consideration of boundary and interior layer type stationary
solutions of the reaction-diffusion problem

ε2∂
2v

∂x2
− ∂v

∂t
= f(v, x, ε), x ∈ (−1; 1), t > 0;

dv

dx
(∓1, t) = u(∓), v(x, 0) = vinit(x, ε)

(1)

and its extension to multidimensional in space variable case. Hear the
source function f is sufficiently smooth.

We also present the extension of our results for periodic parabolic
problem with singularly perturbed boundary conditions

ε2

(
4u− ∂v

∂t

)
− f(u, x, t, ε) = 0,

(x, t) ∈ Dt := {(x, t) ∈ R3 : x ∈ D, t ∈ R},

ε
∂u(x, t, ε)

∂n
= uΓ(x, t), x ∈ Γ, t ∈ R,

u(x, t, ε) = u(x, t+ T, ε), x ∈ D̄, t ∈ R,

(2)

Problems of the types (1) and (2) have a lot of applications (see [2], [3]
and references therein). The conditions of the stability or instability
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stationary solutions are presented. In particular, we prove the stabil-
ity of stationary solutions with of non monotone boundary layer. The
study conducted in this work gives an answer about local and non-
local attraction domain of the stable stationary solutions or stable
periodic solutions. The results are used for the stabilization of unsta-
ble solutions of the corresponding Dirichlet problems. They sagest an
numerical approach of computing unstable solutions of various applied
problems by numerical methods of stationing.

This work was supported by the Russian Fund of Basic Research (project

N 19–01–000327).
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ASYMPTOTIC SOLUTION OF COEFFICIENT INVERSE
PROBLEMS FOR INTERIOR LAYER BURGERS TYPE

EQUATIONS WITH MODULAR NONLINEARITY

N. N. Nefedov1, V. T. Volkov2

1Department of Mathematics, Faculty of Physics, Lomonosov
Moscow State University, Moscow, Russia;

nefedov@phys.msu.ru
2Department of Mathematics, Faculty of Physics, Lomonosov

Moscow State University, Moscow, Russia;
volkovvt@mail.ru

Recent results of using asymptotic analysis for asymptotic solv-
ing of some classes inverse problems for reaction-diffusion-advection
equations are presented. This approach is applied to a new class
of time-periodic reaction-diffusion-advection problems with internal
transition layers. Particularly, for Burgers-type equation, which has a
time-periodic solution of moving front type, asymptotic analysis was
applied to solve the inverse problem of restoring some parameters of
the original model by known information about the observed solution
of the direct problem at a given time interval (period).

These results were illustrated by the following problem

ε

(
∂2u

∂x2
− ∂u

∂t

)
+ A(u, x, t) · ∂|u|

∂x
= B(u, x, t, ε),

(x, t) ∈ D := {x ∈ (−1, 1); t ∈ R},
u(−1, t) = uleft(t), u(1, t) = uright(t), t ∈ R,
u(x, 0) = u(x, t+ T ), x ∈ [−1, 1], t ∈ R,

Functions A(u, x, t) > 0, B(u, x, t, ε), uleft(t) and uright(t) are
sufficiently smooth and T -periodic in t. This equation contains so-
called modular advection or nonlinearity. Problems of this type have
a lot of applications.

The inverse problem is to restore coefficients of reaction or advec-
tion in the equation, or boundary regimes, using given information
about the observed moving front location.

Main idea of our approach is based on the fact that asymptotic
analysis allows to reduce the original problem to a much simpler prob-
lems which connect with given accuracy some parameters of the orig-
inal model to be restored with the observed data. The concept of an
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asymptotic solution of coefficient inverse problems is introduced. The
accuracy of the solution is estimated.

The proposed approach can be applied to sufficiently wide class of
problems with boundary and internal layers.

The authors were supported by the Russian Science Foundation (project no. 18-

11-00042).
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ON THE DYNAMICS OF CERTAIN HIGHER-ORDER
SCALAR DIFFERENCE EQUATION

P. N. Nesterov

P.G. Demidov Yaroslavl State University, Yaroslavl, Russia;
p.nesterov@uniyar.ac.ru

We construct the asymptotics as n → ∞ for the solutions of the
following (k + 1)-th order scalar linear difference equation:

x(n+ k + 1)− k + 1

k
x(n+ k) +

(1

k
+ q(n)

)
x(n) = 0, n ∈ N. (1)

Here the real function q(n) tends to zero as n → ∞ in an oscillatory
way. We now outline the problems that lead to Eq. (1).

First, we note that Eq. (1) is equivalent to the linear delay differ-
ence equation

∆y(n) = −p(n)y(n− k), (2)

if

lim
n→∞

p(n) =
kk

(k + 1)k+1
. (3)

Here the symbol ∆ stands for the forward difference operator. It is
known (see, e.g., [1, 2]) that if function p(n) tends to the limit value
in (3) in an oscillatory way the critical case in the oscillation problem
for solutions of Eq. (2) occurs.

Another problem concerning Eq. (1) comes from the stability the-
ory. The so called critical case of the stability problem occurs in this
equation. Namely, the characteristic polynomial of the unperturbed
equation (q(n) = 0)

L(λ) = λk+1 − k + 1

k
λk +

1

k

has the multiple root λ1,2 = 1 and all the other roots lie inside the
unit circle in C.

In the case k = 1 equation (1) may be considered as the difference
Schrödinger equation with zero energy and the discrete Wigner–von
Neumann type potential. The asymptotic formulae in this situation
were constructed in [3].
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To construct the asymptotics for solutions of Eq. (1) we use the
special asymptotic summation method, proposed in [4]. This method
uses the fact that there exists for sufficiently large n the attractive
invariant manifold (called critical manifold) in the phase space of linear
system that is equivalent to Eq. (1). It is possible to construct the
asymptotics for solutions of the latter system lying on this manifold.
Due to the attractivity property of the manifold, this allows us to get
the asymptotics for solutions of the initial Eq. (1). To simplify the
process of constructing the asymptotics we also apply the averaging
changes of variables, described in [3].

We illustrate the obtained asymptotic formulae for solutions of
Eq. (1) by two examples:

q(n) =
(−1)n

nα
and q(n) =

sinωn

nα
,

where α > 0 and 0 < ω < 2π, ω 6= π.

This work was carried out within the framework of a development programme

for the Regional Scientific and Educational Mathematical Center of the Yaroslavl

State University with financial support from the Ministry of Science and Higher

Education of the Russian Federation (Agreement No. 075-02-2020-1514/1 additional

to the agreement on provision of subsidies from the federal budget No. 075-02-2020-

1514).
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FROM SOLUTIONS OF YANG–BAXTER EQUATIONS
TO HIGHER DIMENSIONAL INTEGRABLE SYSTEMS

G. Papamikos

Department of Mathematical Sciences, University of Essex, UK;
geopap1983@gmail.com

We show how solutions of the set theoretical Yang–Baxter equa-
tion can be used as building blocks for a hierarchy of integrable maps
in high dimensions. We give several examples of such integrable maps
in dimension 3 and we explore their integrability and dynamical prop-
erties. These maps can also be seen as numerical interpolating al-
gorithms for integrable vector fields. We generalise this construction
using solutions of the set theoretic entwining Yang–Baxter equation
and we present new integrable maps.

A NEW CLASS OF INTEGRABLE TWO-COMPONENT
SYSTEMS OF HYDRODYNAMIC TYPE

M. V. Pavlov
1Lebedev Physical Institute Russian Academy of Sciences, Moscow,

Russia; maksmath@gmail.com

We consider a class of Hamiltonian systems of hydrodynamic type,
whose Hamiltonian densities quadratically depend on one of the field
variables. It is shown that such Hamiltonian systems have an infinite
set of polynomial conservation laws in this field variable.

The author was supported by the Russian Foundation for Basic Research (project

no. 20-01-00157).
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LOCAL DYNAMICS OF CAHN–HILLIARD EQUATION

S. P. Plyshevskaya

V.I. Vernadsky Crimean Federal University, Simferopol, Russia;
splyshevskaya@mail.ru

The study of kinetics of fibering in binary mixtures with fixed con-
centration of components is one of the up to date objectives of con-
densed state physics. Cahn-Hilliard equation is one of the models used
while studying spontaneous phase separation (binary) of a substance
(an alloy), where the unknown function is a relative concentration of
a substance component.

We study the generalized Cahn-Hilliard equation

∂u

∂t
= − ∂2

∂x2

[
α
∂2u

∂x2
+ λ

∂u

∂x
+ u+ bu2 − u3

]
. (1)

Together with (1) we study periodic edge conditions of

u(t, x+ 2π) ≡ u(t, x). (2)

In (1) we perform the substitution: u(t, x) = υ(t, x) + c.
As a result we obtain the boundary-value problem

∂υ

∂t
= − ∂2

∂x2

[
α
∂2υ

∂x2
+ λ

∂υ

∂x
+ βυ + γυ2 − υ3

]
, (3)

υ(t, x+ 2π) ≡ υ(t, x), (4)

where β = 1 + 2bc− 3c2, γ = b− 3c. It is important to note that the
condition

M(υ(t0, x)) ≡ 1

2π

2π∫
0

υ(t0, x)dx = 0

at all t > t0 leads to the fact that the condition

M(υ(t, x)) = 0 (5)

holds.
While studying the local dynamics of the boundary-value prob-

lem (3)—(5) the important role is played by the arrangement of roots
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of Ak of the standard equation for the linearized in zero boundary-
value problem:

λk = −αk4 + ik3λ+ βk2, k = ±1,±2, . . . (6)

Below we suppose that a critical case takes place. Let the value of c
= co be such that

α = β = 1 + 2bc0 − 3c2
0. (7)

Fix arbitrarily the value of c1 and assume in (3)

c = c0 + εc1, (8)

where ε is a small positive parameter, i. e.

0 < ε� 1. (9)

We study the behavior of all the solutions of the boundary-value
problem (3)—(5) from some sufficiently small and not depending on
e neighborhood of zero balance state under the conditions (7)—(9).

In this case the standard equation has a pair of pure imaginary
roots of λ±1 = ±iλ + O(ε), and all its remaining roots have nega-
tive (and separated from the imaginary axis) real parts. Thus, the
conditions of Andronov–Hopf bifurcation are fulfilled.

Introduce into consideration a formal series

υ = ε1/2
[
ξ(τ) exp(ix+ iλt) + ξ̄(τ) exp(−ix− iλt)

]
+ ευ2(t, τ, x)+

+ ε3/2υ3(t, τ, x) + . . . (10)

Here τ = εt —is slow ”time”; the functions υj(t, τ, x) are 2π/λ-
periodic in t and 2π-periodic in x.

Substitute (10) into (3)—(5) and start equating the coefficients at
like powers of ε. At the third step for finding υ3(t, τ, x) we come the
boundary-value problem. The solvability condition of the boundary-
value problem in the indicated class of functions is in performing the
equality

dξ

dτ
= δξ + σξ|ξ|2, (11)

where

δ = 2γc1, σ = 2Aγ − 3, A = 2γ[8α− 2β0 + 3iλ]−1.
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From this and from the general statements we have the following
result.

Theorem 1. Let δ 6= 0 and Reσ 6= 0. Then at all sufficiently
small ε the dynamics of the equation (11) defines the local dynamics
of the boundary-value problem (3)—(5).
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MULTIPLICATIVE DYNAMICAL SYSTEMS IN TERMS
OF THE INDUCED DYNAMICS

A. K. Pogrebkov

Steklov Mathematical Institute, Moscow, Russia;
pogreb@mi-ras.ru

An example of induced dynamics is realized by means of the new
multiplicative determinant relation, roots of which give positions of
particles. We give both: generic scheme of description of completely
integrable dynamical system, parametrized by an arbitrary N × N -
matrix of momenta, and explicit model that interpolates between hy-
perbolic systems of Calogero–Moser and Ruijsenaars–Schneider. Some
special cases of this model are detailed.

The author was supported by the Russian Foundation for Basic Research (project

no. 18-01-00273).
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DYNAMICS OF A CYLINDER AND TWO POINT
VORTICES IN AN IDEAL FLUID

S. M. Ramodanov1, S. V. Sokolov2,3

1Moscow Aviation Institute (National Research University), Moscow,
Russia; ramodanov@mail.ru

2Moscow Institute of Physics and Technology (National Research
University), Dolgoprudny, Russia;

3Steklov Mathematical Institute of Russian Academy of Sciences,
Moscow, Russia; sokolovsv72@mail.ru

The motion of point vortices are widely studied in the literature.
We consider plane-parallel motion of a circular cylinder interacting
dynamically with two point vortices. The system has 4 degrees of
freedom and is governed by a set of ordinary differential equations
which prove to be Hamiltonian. The governing equations are invariant
under rigid transformations of the plane and thus admit three addi-
tional integrals of motion (besides the Hamiltonian function). On the
zero level of linear momenta the three integrals are in involution which
allows one to reduce the system’s order by three units thereby obtain-
ing a one-degree-of freedom Hamiltonian system. The latter is then
investigated to reveal some intriguing features of the dynamics. The

first author was supported by the Russian Foundation for Basic Research (project

no. 20-01-00312 A). The second author was supported by the Russian Foundation

for Basic Research (project no. 20-01-00399 A).
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ON ELECTRIC POTENTIAL OF THIN ROUND
LAMELLA

A. E. Rassadin
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Let one consider the following two-dimensional problem on a disk
with radius a:

∆ϕ = −I0

λ
δ(r− r0) +

2

λ

N∑
k=1

Ik δ(r− rk), (1)

where ϕ(r) is electric potential on the thin disk, ∆ is Laplacian, λ
is surface conductivity of the disk, I0 is current flowing into point
r0 = (b cos β, b sin β), 0 ≤ b < a, and Ik are currents flowing out via
points rk = (a cos θk, a sin θk), k = 1, N .

These constant currents obey to the following relation expressing
conservation of charge in the system:

N∑
k=0

Ik = I0 . (2)

Equation (1) ought to be provided by boundary condition corre-
sponding to impe-
netrability of disk’s boundary Γ [1]:

∂ϕ

∂n
|Γ = 0 , (3)

where Γ is circle |r| = a with eliminated points rk, k = 1, N .
The next theorem has been proven:
Theorem. Exact solution of the problem (1)-(3) is equal to ϕ(r) =

ϕs(r) + ψ(r) where

ϕs(r) = − I0

2π λ
ln
|r− r0|

a
+

N∑
k=1

Ik
π λ

ln
|r− rk|

a

89



Conference “Integrable Systems and Nonlinear Dynamics” (ISND-2020)

is singular part of electric potential on the disk |r| < a and

ψ(r) = − I0

4π λ
ln

[
1 +

(
b r

a 2

)2

− 2
b r

a 2
cos(θ − β)

]

is its regular part written in polar coordinates (r, θ).
Proof. Corner stones of the proof are equation (2) and a number

of the well-known Fourier series.

The result obtained is very useful for technological control under
measurement of surface conductivity λ by means of the Kelvin probe
force microscopy (see [1] and references there in).

This work was supported by the Russian Foundation for Basic Re-
search, grant No. 18-08-01356-a.
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ON THE LIMITATION OF BACKWARD INTEGRATION
METHOD IN CASE OF RESONANCE ORBITS

A. E. Rosaev

Research and Educational Center ”Nonlinear Dynamics”,
Yaroslavl State University,Yaroslavl, Russia;
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It is well known that backward integration method is restricted
by few million years due to orbital chaoticity, (Laskar et al, 2011,
Radovic,2017). But in case orbits close to resonance valid backward
integration interval may be shorter.In particular,we note it in our pre-
vious works (Rosaev, 2019).

In this paper we have shown that results of backward and forward
integration of the same orbit crossed the mean motion resonance in
the presence of semimajor axis drift are not the same. We confirm the
Murray Dermott (1999) theory conclusion that orbit migrated toward
the planet can be (temporary) captured in resonance, when the same
orbit diverged from the perturbed planet only jump from one side
resonance to another. As a result, orbit before resonance crossing
cannot be reconstructed properly by numeric integrations. This result
significantly restricted on the applicability of the backward integration
method to the interaction of the small asteroids with resonance in the
presence of the Yarkovsky effect. Also, it can be important in the case
of the studying of the planetary migrations.
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ON THE DIRICHLET PROBLEM FOR AN ELLIPTIC
FUNCTIONAL-DIFFERENTIAL EQUATION WITH
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The paper considers the Dirichlet problem for an elliptic functional-
differential equation containing a combination of shifts and contrac-
tions of the argument of an unknown function under the Laplace oper-
ator. Sufficient conditions for unique solvability are established. It is
also shown that the problem can have an infinite-dimensional variety
of solutions.

This work is done in the framework of the State Contract in accordance with
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singular integro-differential equations and boundary value problems’. The authors

also acknoowledge support by the Russian Foundation for Basic Research (project

no. 18-41-200001p-a).
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NONWANDERING SET POSSESSING WADA
PROPERTY

D. W. Serow

State Institute of Economy Finance Law and Technology,
188300 Gatchina, Russia; dimusum@yandex.ru

Let dissipative dynamic system ψ acting on Euclidean plane is
constituted to be the diffeomorphism action at iterations. Moreover
there subsists nonwandering continuum Υ being common boundary
more then two regions. It is clear that ψk(Υ) = Υ for all k ∈ N.

The dynamic system is said to be possesses Wada property if there
subsists invariant (nonwandering) continuum being common boundary
three or more then regions.

There exist only two topological type, symmetric and antisymmet-
ric, of dissipative dynamic system with nonwandering continuum being
common boundary three region [1, 2]. It is clear that the dissipative
dynamic system has either saddle and two unstable antisaddle fixed
points or fixed inverse saddle and two two-periodic points.

Antisymmetric dynamic system with nonwandering continuum can
transform to be dynamic system with nonwandering vortex street
without fixed points. The further factorization procedure allows you
to get a dynamic system possesses the Wada property with nonwan-
derig continuum being common boundary any finite regions number.

A special place among the obtained dynamic systems is occupied
by a system with a nonwandering continuum being common boundary
two regions and it being Birkhoff curve. It is positive solution of
problem 1100 [3]: does there exist an analytic diffeomorphism f : A→
A without periodic points such that such that for some x in the interior
of annulus A, the omega- limit of x contains points of both boundary
components of annulus A?

REFERENCES

1. Serow D. W., ”Dissipative Dynamical System with Lakes of Vada”, NPCS, 9, 4,
394− 98 (2006).
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NON ORDINARY GUTKIN BILLIARDS

Lior Shalom

Tel Aviv University, Tel Aviv, Israel;
shalom@mail.tau.ac.il

Consider ordinary Birkhoff billiard such that every trajectory leav-
ing the curve with angle δ will next hit the boundary with angle δ
again, regardless to the exit point. In the plane such examples were
introduced by E. Gutkin in [2] and are very explicit. These type
of billiards are related to the problem of floating bodies in equilib-
rium, which goes back to S. Ulam (problen 19 in [1]). We refer to
these examples as ordinary Gutkin billiards and present non-ordinary
Gutkin billiards. First result is an explicit example of a convex plane
curve such that the outer billiard has a given finite number of invari-
ant curves. In the second result we construct examples of magnetic
Gutkin billiards where we consider magnetic billiards under a constant
magnetic field.
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SYMMETRIES OF THE FULL SYMMETRIC TODA
SYSTEM ON REAL LIE ALGEBRAS

G. I. Sharygin

Lomonosov Moscow State University, Moscow, Russia;
ITEP, Moscow, Russia;
sharygin@itep.ru

The full symmetric Toda system is the dynamical system deter-
mined by a Cartan involution on a real form of semisimple Lie algebra.
It is known that the system is Hamiltonian and integrable. However,
the construction of the first integrals of this system is not an easy
task. In my talk, based on the joint work with Yu. Chernyakov and
A. Sorin I will describe a way to construct a large commutative family
of symmetries of this system, i.e. of vector fields, that will commute
with each other and with the vector field that generates the system.
The construction is based on the geometric considerations and on the
structure of representations of the Lie algebra.

The author was supported by the Russian Science Foundation grant No. 16-

11-10069.
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RETROGRADE COORBITAL MOTION OF CELESTIAL
BODIES: THE INVESTIGATION OF QUALITATIVE

PROPERTIES USING WISDOM’S
”ADIABATIC APPROXIMATION”

V. V. Sidorenko

Keldysh Institute of Applied Mathematics RAS, Moscow, Russia;
sidorenko@keldysh.ru

In the last decades of the XXth century it became clear that be-
havior of approximate integrals of motion called adiabatic invariants is
important in study of resonant effects in dynamics of celestial bodies
(e.g. [1-3]). A first step of the standard scheme of the adiabatic ap-
proximation in the investigations of mean motion resonances (MMR)
is averaging over the fastest dynamic process, i.e. over the orbital
motion of the objects in commensurability. In averaged equations of
motion one should take a subsystem that describes the process of ”in-
termediate” time scale - the variation of the resonant angle. This
subsystem can be interpreted as a one degree of freedom Hamiltonian
system depending on other variables as slowly varying parameters.
Consequently, the value of the ”action” variable for this subsystem will
be an adiabatic invariant (AI). Studying then the properties of level
surfaces of AI in the subspace of the slowest variables we can draw
conclusions about the secular evolution of orbits of celestial bodies in
MMR.

As an illustration of the opportunities of this approach, we apply it
to analyze the properties of retrograde co-orbital motion. Dynamically
it corresponds to retrograde 1:1 MMR. This situation is not something
abstract: the asteroid 514107 Ka’epaoka’awela is moving in such a
resonance with the motion of Jupiter.

The author was supported by the Russian Foundation for Basic Research (project

no. 20-01-00312A).
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CHAOTIC WAVE PACKET PROPAGATION IN
DISORDERED NONLINEAR LATTICES WITH ONE

AND TWO SPATIAL DIMENSIONS

Ch. Skokos

Department of Mathematics and Applied Mathematics, University of
Cape Town, Cape Town, South Africa;

haris.skokos@uct.ac.za; haris.skokos@gmail.com

In this talk I will present some resent results on the chaotic be-
havior of several multidimensional, disordered, nonlinear Hamiltonian
systems, emphasizing the quantification of chaos strength through the
computation of the maximum Lyapunov exponent (mLE, see for ex-
ample [1] and references therein). More specifically, I will discuss the
dynamics of the disordered variants of two typical lattice models: the
Klein-Gordon oscillator chain and the discrete nonlinear Schrödinger
equation, focusing on the version of these systems for two spatial di-
mensions. Presenting results concerning the chaoticity of these models
I will study the time evolution of the mLE and the distribution of the
associated deviation vector [2, 3, 4]. I will emphasize the fact that
the observed power law decays of the mLE have exponents different
from −1, which is seen in the case of regular motion. The fact that
the same dynamical behaviors are observed for both models signifies
the generality of the underlying chaotic mechanisms.
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DISCRIMINANT SET OF THE RESTRICTED
THREE-VORTEX PROBLEM ON A PLANE

S. V. Sokolov1,2, A. V. Sakharov1

1Moscow Institute of Physics and Technology (National Research
University), Dolgoprudny, Russia;

sokolovsv72@mail.ru
2Steklov Mathematical Institute of Russian Academy of Sciences,

Moscow, Russia;
sah.aleksandr@gmail.com

The dynamics of a few point vortices in a perfect fluid is a classical
object for investigations starting from Kirchhoff, Thomson and Gröbli.
We consider a restricted three-vortex problem on the unbounded plane
when one of the vortices is fixed. The system has 2 degrees of freedom
and is governed by a set of ordinary differential equations which can
be present in a Hamiltonian form. The governing equations has an
additional first integral. We extract a discriminant set of the system in
an explicit form. Some critical motions of the vortices is also observed.

The first author was supported by the Russian Foundation for Basic Research

(project no. 20-01-00399 A). The second author was carried out at MIPT under

project 5-100 for state support for leading universities of the Russian Federation.
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NON-ABELIAN EVOLUTION SYSTEMS WITH
CONSERVATION LAWS AND SYMMETRIES

V. V. Sokolov

Landau Institute for Theoretical Physics, Moscow, Russia;
Federal University of ABC, Sao Paulo, Brazil;

vsokolov@landau.ac.ru

In this talk, we find noncommutative analogs for well-known poly-
nomial evolution systems with higher conservation laws and symme-
tries. The integrability of obtained non-Abelian systems is justified
by explicit zero curvature representations with spectral parameter.

The talk is based on joint papers with V. Adler.
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GRAPH COMBINATORICS, STATISTICAL PHYSICS
AND CLUSTER ALGEBRAS

D. V. Talalaev

Moscow State University, Moscow, Russia;
dtalalaev@yandex.ru

The talk is focused on three related topics: electrical networks,
polynomial graph invariants and the Ising-type models. All of them
possesse the same characteristic properties to be an integrable sta-
tistical model, to be a cluster variety and to be inherent to some
nontrivial combinatorial problem. I will explain the similarity be-
tween these tasks and present the substantial algebraic structure be-
hind. The talk is based on some recent works with V. Gorbounov
https://arxiv.org/abs/1905.03522 and B. Bychkov and A. Kazakov
https://arxiv.org/abs/2005.10288.
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ENTROPY OF AN OPERATOR

D. V. Treschev

Steklov Mathematical Institute, Moscow, Russia;
treschev@mi-ras.ru

We extend the concept of the measure entropy from the group of
automorphisms of a measure space to the group of unitary operators
on a Hilbert space. Our main motivations concern formalization of
the idea of quantum chaos. The key ingredient of our construction is
a (probably) new concept from functional analysis, the dimension of
a (bounded) operator.

The author was supported by a grant from the Russian Science Foundation

(project no. 18-01-00887).

RIMANN-ROCH THEOREM AND SUPERINTEGRABLE
SYSTEMS

Andrey Tsiganov

St. Peterburg State University, St.Petersburg, Russia;
andrey.tsiganov@gmail.com

The Riemann-Roch theorem for a divisor D on an irreducible genus
g algebraic curve C is

dim|D| = deg(D)− g + i(D).

In classical mechanics positive divisors without matching points

D = P1 + . . .+ Pn , deg(D) = n

appear in a study of dynamical systems integrable by Abel’s quadra-
tures

n∑
i=1

∫ Pi

ωj = tj , j = 1, . . . , n.

In this case

• deg(D) is a number of variables of separation, i.e. number of
degrees of freedom;
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• g is a topological genus of algebraic curve C defined by separated
relations.

It is natural to ask a question about the mechanical meaning of the
remaining terms in the Riemann-Roch theorem.

If n > g we have i(D) = 0 and dimension of linear space or dimen-
sion of the space of meromorphic functions is equal to

dim|D| = n− g > 0.

In this case divisor D of degree n is reduced to divisor ρ(D) ∈ Jac(C)
of degree g.

We want to discuss what mean dim|D| and reduced divisor ρ(D)
on an example of superintegrable systems associated with hyperelliptic
and non hyperelliptic algebraic curves.
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INTEGRABLE SYSTEMS IN MULTIDIMENSIONS

M. C. Van der Weele1, A. S. Fokas2

1University of Cambridge, Cambridge, United Kingdom;
mcv26@cam.ac.uk

2University of Cambridge, Cambridge, United Kingdom & University
of Southern California, Los Angeles, USA;

tf227@cam.ac.uk

One of the main current topics in the field of integrable systems
concerns the existence of nonlinear integrable evolution equations in
more than two spatial dimensions. The fact that such equations exist
was proven by A.S. Fokas [1], who derived equations of this type in
4+2 dimensions, i.e., four spatial dimensions and two time dimensions.
The associated initial value problem for such equations, where the
dependent variables are specified for all space variables at t1 = t2 = 0,
can be solved by means of a nonlocal d-bar problem. The next step
in this program is to formulate and solve nonlinear integrable systems
in 3+1 dimensions (i.e., with three space variables and a single time
variable) in agreement with physical reality. The method we employ is
to first construct a system in 4+2 dimensions, with the aim to reduce
this then to 3+1 dimensions.

In this talk we focus on the Davey-Stewartson system [2] and the
3-wave interaction equations [3]. Both these integrable systems have
their origins in fluid dynamics where they describe the evolution and
interaction, respectively, of wave packets on a fluid surface. We start
from these equations in their usual form in 2+1 dimensions (two space
variables x, y and one time variable t) and we bring them to 4+2 di-
mensions by complexifying each of these variables. We solve the initial
value problem of these equations in 4+2 dimensions. Subsequently, for
the Davey-Stewartson system in the linear limit we reduce this anal-
ysis to 3+1 dimensions to comply with the natural world. Finally,
we discuss the construction of the 3+1 reduction of the full nonlinear
problem, which is currently under investigation.
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SYMMETRIES AND INTEGRABILITY OF
DIFFERENCE EQUATIONS

P. Xenitidis

Liverpool Hope University, Liverpool, UK;
xenitip@hope.ac.uk

The existence of hierarchies of higher order symmetries, aka gen-
eralised symmetries, serves as a definition of integrability. It applies
to differential, differential-difference and difference equations. At the
same time it can be easily argued that there is no simple and system-
atic method to compute generalised symmetries of difference equa-
tions. Some methods/approaches exist but are not always so helpful.
And on top of that, there is a lack of relevant symbolic algebra soft-
ware packages compared to the plethora of software for the symmetry
analysis of differential equations.

In this talk I am going to present a systematic and algorithmic way
to compute generalised symmetries of difference equations. This ap-
proach exploits the theory of integrability conditions, employs Laurent
and Taylor formal series of pseudo-difference operators and formulates
algebraically the determining equations.
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SPATIOTEMPORAL SOLITON BULLET DYNAMICS IN
MULTIMODE OPTICAL FIBERS

M. Zitelli1, F. Mangini2, M. Ferraro1, A. Niang2,
D. S. Kharenko3, S. Wabnitz1,3
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In recent years, nonlinear pulse propagation in multimode fibers
(MMFs) is has experienced a dramatic resurgence of interest, be-
cause of their potential for optical communications and high-power
lasers. However, from the fundamental viewpoint several aspects still
remain to be fully understood. Here we experimentally and theoret-
ically studied the dynamics of high-energy (up to reaching the fiber
damage threshold) spatiotemporal solitons in MMFs with a graded-
index (GRIN) core profile. Intra-pulse Raman scattering leads to the
fission of the initial femtosecond pulse into different multimode soli-
tons, which undergo Raman self-frequency shift (SSFS) [1-2]. In our
experiments, we revealed the presence of a new nonlinear propagation
regime in MMFs, where stable spatiotemporal solitons are created by
the fission of the initial pulse. Remarkably, these solitons have dif-
ferent amplitudes and wavelengths, but nearly equal time duration
[3].

Numerical simulations were conducted to reproduce the phenomenon
of fission using an exact 3D+1 vector model, including higher-order
dispersion, Kerr and Raman nonlinearities. We also included a phe-
nomenological two-photon absorption (TPA) term, to model the pres-
ence of nonlinear losses.

The measured output spectrum shows that the Raman-induced
SSFS tends to saturate for energies higher than 200 nJ. This is due
to the presence of high nonlinear loss in the first few cm of MM fiber,
owing to multi-photon absorption by fiber defects and doping [4]. Two
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distinct multimode soliton propagation regimes exist: in the first, only
weak linear losses are present; in the second, the output energy remains
clamped to a nearly constant value. Remarkably, in the nonlinear loss
regime, nearly all of the transmitted energy is funneled into high-
energy spatiotemporal soliton pulses with a bell-shaped, high-quality
beam profile. These results are of significant interest for the devel-
opment of new, high-power laser soliton sources in the mid-infrared
domain of the spectrum.

The authors were supported by the European Research Council (grant no. 740355),

and by the Russian Ministry of Science and Education (grant no. 14.Y26.31.0017).
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